русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Отображение множеств. Функции.


Дата добавления: 2015-07-23; просмотров: 4387; Нарушение авторских прав


Соответствиемежду множествами А и В называется подмножество их декартова произведения

Иными словами, пары задают соответствие между множествами А={ } и В={ }, если указано правило R, по которому для элемента множества А выбирается элемент из множества В.

Если элементу поставлен в соответствие некоторый элемент , b называется образом элемента а и записывается так: b= R (a). Тогда - прообраз элемента , который обладает свойствами единственности и полноты:

1. Каждому прообразу соответствует единственный образ;

2. Образ должен быть полным, так же как полным должен быть и прообраз.

Пример.Если А – множество парабол, В – множество точек плоскости, а R – соответствие “вершина параболы”, то R (а) – точка, являющая вершиной параболы a, а состоит из всех парабол с вершиной в точке b (рис. 6)

Образ множества А при соответствии R называется множеством значений этого соответствия и обозначается R (A), если R (A) состоит из образов всех элементов множества А.

Прообраз множества В при некотором соответствии R называют областью определения этого соответствия и обозначают . В свою очередь является обратным соответствием для R.

Так, для соответствия R, заданного точками координатной плоскости, областью определения является множество точек оси абсцисс, а множеством значений – проекции точек на ось ординат (рис.7). Поэтому для некоторой точки

 

Рис. 6.

Рис. 7

 

М (х, у) у является образом, а х – прообразом при некотором соответствии R: У=R (x), Соответствие между множествами Х, удобно в виде точки на плоскости с помощью метода декартовых координат.

Пусть задано соответствие R и Y=R (X). Ему соответствуют точки М с координатами (х; у) (рис. 7). Тогда множество точек плоскости, выделяемое отображением R, будет графиком.

Для описания соответствий между множествами используют понятие отображение (функции) одного множества на другое.



Для задания отображения необходимо указать:

1.Множество, которое отображается (область определения данного отображения, часто обозначаются );

2.Множество, в (на) которое отображается данная область определения (множество значений этого отображения, часто обозначается );

3.Закон или соответствие между этими множествами, по которому для элементов первого множества (прообразов, аргументов) выбраны элементы (образы) из второго множества.

Обозначения: .

Способы задания отображений: аналитический (в виде формул), табличный, графический (диаграммы или графы).

Различают два основных вида однозначных отображений (функций). По мощности они делятся на сюръективные и инъективные.

1. Соответствие, при котором каждому элементу множества А указан единственный элемент множества В, а каждому элементу множества В можно указать хотя бы один элемент множества А, называется отображением множества А на множество В(сюръекция).

2. Соответствие, при котором каждому элементу множества А соответствует единственный элемент множества В, а каждому элементу В соответствует не более одного прообраза из А, называется отображением множества А во множество В (инъекция).

Отображение множества А на множество В, при котором каждому элементу множества В соответствует единственный элемент множества А, называется взаимно – однозначным соответствием между двумя множествами, или биекцией.

График непрерывного бисктивного отображения показан на рис. 8.

Рис. 8.

Если множество А отображается взаимно – однозначно на множество В, т.е. , то отображение , при котором каждому элементу множества В ставится в соответствие его прообраз из множества А, называется обратным отображением для и записывается . Так как одному образу пи биекции соответствует в точности один прообраз, обратное отображение будет определено всюду на В и однозначно.

Для биекции принята запись: .

 

Таким образом, биекция – функция, являющаяся одновременно инъекцией и сюръекцией.



<== предыдущая лекция | следующая лекция ==>
Декартово произведение множеств | Бинарные отношения.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.06 сек.