Условной вероятностью события A при выполнении события B называется отношение Здесь предполагается, что .
В качестве разумного обоснования этого определения отметим, что при наступлении события B оно начинает играть роль достоверного события, поэтому надо потребовать, чтобы . Роль события A играет AB, поэтому должна быть пропорциональна . (Из определения следует, что коэффициент пропорциональности равен .)
Теперь введем понятие независимости событий.
Естественно считать события A и Bнезависимыми, если .
Это означает: оттого что произошло событие B, вероятность события A не изменилась.
С учетом определения условной вероятности, это определение сведется к соотношению . Здесь уже нет необходимости требовать выполнения условия . Таким образом, приходим к окончательному определению.
События A и B называются независимыми, если P (AB) = P(A)P(B).
Последнее соотношение обычно и принимают за определение независимости двух событий.
Несколько событий называются независимыми в совокупности, если подобные соотношения выполняются для любого подмножества рассматриваемых событий. Так, например, три события A, B и C называются независимыми в совокупности, если выполняются следующие четыре соотношения:
Приведем ряд задач на условную вероятность и независимость событий и их решения.
Задача 21. Из полной колоды из 36 карт вытаскивают одну карту. Событие A – карта красная, B – карта туз. Будут ли они независимы?
Решение. Проведя вычисления согласно классическому определению вероятности, получим, что . Это означает, что события A и B независимы.
Задача 22. Решить ту же задачу для колоды, из которой удалена пиковая дама.
Решение. . Независимости нет.
Задача 23. Двое поочередно бросают монету. Выигрывает тот, у которого первым выпадет герб. Найти вероятности выигрыша для обоих игроков.
Решение. Можно считать, что элементарные события – это конечные последовательности вида (0, 0, 1,…, 0, 1). Для последовательности длины соответствующее элементарное событие имеет вероятность Игрок, начинающий бросать монету первым, выигрывает, если реализуется элементарное событие , состоящее из нечетного числа нулей и единиц. Поэтому вероятность его выигрыша равна
Выигрыш второго игрока соответствует четному числу нулей и единиц. Он равен
Из решения следует, что игра заканчивается за конечное время с вероятностью 1 (так как ).
Задача 24. Для того чтобы разрушить мост, нужно попадание не менее 2 бомб. Сбросили 3 бомбы. Вероятности попадания бомб равны соответственно 0, 1; 0, 3; 0, 4. Найти вероятность разрушения моста.
Решение. Пусть события A, B, C состоят в попадании 1-й, 2-й, 3-й бомбы соответственно. Тогда разрушение моста происходит только при реализации события В силу того что слагаемые в этой формуле попарно несовместны, а сомножители в слагаемых независимы, искомая вероятность равна
Задача 25.К одному и тому же причалу должны пришвартоваться два грузовых судна. Известно, что каждое из них может с равной вероятностью подойти в любой момент фиксированных суток и должно разгружаться 8 ч. Найти вероятность того, что судну, пришедшему вторым, не придется дожидаться, пока закончит разгрузку первое судно.
Решение.Будем время измерять в сутках и долях суток. Тогдаэлементарные события – это пары чисел , заполняющие единичный квадрат, где x – время прихода первого судна, y – время прихода второго судна. Все точки квадрата равновероятны. Это означает, что вероятность любого события (т. е. множества из единичного квадрата) равна площади области, соответствующей этому событию. Событие A состоит из точек единичного квадрата, для которых выполняется неравенство . Это неравенство соответствует тому, что судно, пришедшее первым, успеет разгрузиться к моменту прихода второго судна. Множество этих точек образует два прямоугольных равнобедренных треугольника со стороной 2/3. Суммарная площадь этих треугольников равна 4/9. Таким образом, .
Задача 26.На экзамене по теории вероятностей было 34билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав в первый раз «неудачный» билет?
Решение. Случайный выбор состоит в том, что два раза подряд извлекают по одному билету, причем вытянутый в первый раз билет назад не возвращается. Пусть событие В состоит в том, что первым вынут «неудачный» билет, а событие А состоит в том, что вторым вынут «удачный» билет. Очевидно, что события А и В зависимы, так как извлеченный в первый раз билет не возвращается в число всех билетов. Требуется найти вероятность события АВ.