русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Выборки с повторениями


Дата добавления: 2015-07-23; просмотров: 2277; Нарушение авторских прав


Размещениями с повторениями из n элементов по m называются упорядоченные выборки из m элементов множества, в которых элементы множества могут повторяться. Количество всех размещений с повторениями обозначим .

Пример 2.4. Сколько всего трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5?

.

Сочетаниями с повторениями из n элементов по m называются неупорядоченные выборки из m элементов множества, в которых элементы множества могут повторяться. Число всех сочетаний с повторениями обозначим .

Пример 2.5. Сколько различных вариантов количества очков может выпасть при бросании двух кубиков?

.

Перестановками с повторениями из n элементов по k называется упорядоченная выборка из k элементов множества, в которой каждый элемент множества встречается ki раз (причем, k1+k2+...+kn=k). Число перестановок с повторениями обозначается

Пример 2.6. Сколько разных слов можно образовать при перестановке букв слова «математика»?

В слове «математика» буква «м» встречается 2 раза, «а» – 3 раза, «т» – 2 раза, «е» – 1 раз, «и» – 1 раз, «к» – 1 раз. Поэтому число различных слов равно

При подсчете числа комбинаций используют два правила: правило суммы и правило произведения.

Правило суммы. Если объект А можно выбрать m способами, а объект B – k способами, то объект «либо А, либо В» можно выбрать m+k способами.

Правило произведения. Если объект А можно выбрать m способами, а после каждого такого выбора объект В можно выбрать k способами, то пару объектов А и В можно выбрать m×k способами.

Пример 2.7. Сколько разных четырехзначных чисел можно составить из цифр 0, 1, 2?

Из цифр 0, 1, 2 можно составить число, но сюда входят числа, у которых первая цифра нуль, которые не являются четырехзначными. Таких чисел будет . Поэтому ответ 81 – 27 = 54.

Пример 2.8 Сколько различных пятизначных чисел можно составить из цифр числа 1111222345600?



Разделим все составленные числа на группы по первой цифре в числе. Таких групп будет три.

1-я группа. У чисел из этой группы на первом месте стоит «единица». Эти числа имеют вид 1****, где на место **** выбираются 4 цифры из набора 111222345600. Перечислим все возможные случаи. Это могут быть либо 3 «единицы» и любая цифра из множества {2,3,4,5,6,0}, либо 2 «единицы» и 2 «двойки», либо 2 «единицы» и 2 «нуля», либо 2 «единицы» и 2 любые цифры из множества {2,3,4,5,6,0}, либо 3 «двойки» и любая цифра из множества {1,3,4,5,6,0}, либо 2 «двойки» и 2 «нуля», либо 2 «двойки» и 2 любые цифры из множества {1,3,4,5,6,0}, либо 2 «нуля» и 2 любые цифры из множества {1,2,3,4,5,6}, либо 4 любые цифры из множества {1,2,3,4,5,6,0}. Всего таких чисел будет:

2-я группа. У чисел из этой группы на первом месте стоит «двойка». Эти числа имеют вид 2****, где на место **** выбираются 4 цифры из набора 111122345600. Перечислим все возможные случаи. Это могут быть либо 4 «единицы», либо 3 «единицы» и любая цифра из множества {2,3,4,5,6,0}, либо 2 «единицы» и 2 «нуля», либо 2 «единицы» и 2 «двойки», либо 2 «единицы» и 2 любые цифры из множества {2,3,4,5,6,0}, либо 2 «двойки» и 2 «нуля», либо 2 «двойки» и 2 любые цифры из множества {1,3,4,5,6,0}, либо 2 «нуля» и 2 любые цифры из множества {1,2,3,4,5,6}, либо 4 любые цифры из множества {1,2,3,4,5,6,0}. Всего таких чисел будет:

3-я группа. У чисел из этой группы на первом месте стоит ни «единица», ни «двойка», ни «нуль», т.е. одна из цифр множества {3,4,5,6}. Первую цифру можно выбрать 4 способами. Оставшиеся 4 цифры выбираются из набора 1111222345600 с учетом того, что одна из цифр множества {3,4,5,6} уже выбрана. Перечислим все возможные случаи. Это могут быть либо 4 «единицы», либо 3 «единицы» и любая цифра из множества {2,3,4,5,6,0}, либо 2 «единицы» и 2 «двойки», либо 2 «единицы» и 2 «нуля», либо 2 «единицы» и 2 любые цифры из множества {2,3,4,5,6,0}, либо 3 «двойки» и любая цифра из множества {1,3,4,5,6,0}, либо 2 «двойки» и 2 «нуля», либо 2 «двойки» и 2 любые цифры из множества {1,3,4,5,6,0}, либо 2 «нуля» и 2 любые цифры из множества {1,2,3,4,5,6}, либо 4 любые цифры из множества {1,2,3,4,5,6,0}. Всего таких чисел будет:

Всего пятизначных чисел будет:

N=n1+n2+n3=1446+1423+3116=5985.



<== предыдущая лекция | следующая лекция ==>
Перестановки, размещения и сочетания без повторений | Формулы включений и исключений


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.