русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Перестановки, размещения и сочетания без повторений


Дата добавления: 2015-07-23; просмотров: 1398; Нарушение авторских прав


Пусть дано множество M={a1, a2, a3, ..., an}. Набор элементов из множества М называется выборкой объема m из n элементов. Выборка называется упорядоченной, если в ней задан порядок следования. Если порядок следования не является существенным, то выборка называется неупорядоченной.

Размещениями без повторений из n элементов по m называются упорядоченные выборки без повторений элементов множества, которые отличаются одна от другой либо составом элементов, либо порядком их расположения. Число размещений из n элементов по m будем обозначать .

Пример2.1. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется?

Составить разные числа можно способами.

Перестановками без повторений из n элементов называются размещения из n элементов по n. Обозначим число перестановок объема n как Pn.

Пример 2.2. Сколькими способами можно расставить на полке 6 томов книг?

Это можно осуществить способами.

Сочетаниями без повторений из n элементов по m называются любые подмножества из m элементов исходного множества. Число сочетаний без повторений будем обозначать .

Пример 2.3. На тренировках занимаются 8 баскетболистов. Сколько разных стартовых пятерок может быть образовано тренером?

Т.к. при образовании пятерки важен только ее состав, то достаточно определить пятерок.

Число обладает следующими свойствами:

1. ;

2. ;

3. при любых a, b Î R (бином Ньютона).

В силу свойства 3, числа называют биномиальными коэффициентами.



<== предыдущая лекция | следующая лекция ==>
Отношения на множествах | Выборки с повторениями


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.