русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Импликация.


Дата добавления: 2015-07-23; просмотров: 1432; Нарушение авторских прав


Импликация соответствует конструкции «Если …. то».

Определение. Импликацией высказыванийaи b называется высказывание, обозначаемое a → b ( и определяемое следующей таблицей

0 0 1

0 1 1

1 0 0

1 1 1

 

т.е. импликация ложна тогда и только тогда, когда a – истина, а b – ложь.

a – посылка, b − заключение.

Восприятию определения импликации сопротивляется, хотя в математике оно очень часто нами используется. Из арифметики известна теорема «если целое число делится на шесть, то оно делится на два» − высказывание Q. Высказывание а(x) – «число делится на шесть»; высказывание b(x) – «число делится на два», тогда Q(x) ≡ a(x) → b(x). Ясно, что при x = 6, 2, 3 реализуются четвертая, вторая и первая строки. Однако, нельзя подобрать число для третьей строки.

Но можно привести и другие примеры. Например, «если сын сдаст сессию на отлично, то отец купит ему машину. В нашем случае события а и b могут быть концептуально совсем не связаны. Возможны импликации вида «Если сегодня четверг, то 2 х 2 = 5». Эта импликация верна во все дни, кроме четверга.

Приведенные операции не являются независимыми. Одни из них могут быть выражены через другие.

Теорема 1.Справедливы следующие равносильности:

Докажем с помощью таблицы истинности первое соотношение.

0 0 1 1 1

0 1 1 1 1

1 0 0 0 0

1 1 0 1 1

 

Справедливость первого соотношения доказывается тождественностью последних столбцов.

Из приведенных равносильностей видно, что → и ~ выражаются через

Можно показать, что через операции можно выразить любую операцию алгебры высказываний. Поэтому в дальнейшем основное внимание уделяется этим операциям, которые называются булевскими (булевыми) операциями алгебры высказываний. Джордж Буль (1815 – 1864) – английский математик, основатель символической логики, которую теперь принято называть булевой алгеброй.



Теорема 2. Справедливы следующие равносильности для булевой алгебры высказываний:

 

 



<== предыдущая лекция | следующая лекция ==>
Эквиваленция | Формулы алгебры высказываний.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.