русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Натуральные числа


Дата добавления: 2015-07-23; просмотров: 708; Нарушение авторских прав


1. Натуральный ряд. Под натуральным рядом понимают последовательность чисел

0, 1, 2, 3, … .

В современной математике существование натурального ряда является одним из базовых постулатов. Постулируется существование множества N, удовлетворяющего определенным условиям – аксиомам натурального ряда.

Натуральный ряд – это множество Nвместе с отображением непосредственного следования s:NN, s(x)=x’, удовлетворяющие следующим условиям (аксиомам).

1) Множество Nсодержит элемент, обозначаемый через 0, который не следует ни за каким элементом: 0∈Nи 0≠x’ каков бы ни был элемент x∈N.

2) Отображение непосредственного следования инъективно: если x’=y’, то x=y.

3) Аксиома индукции: единственное подмножество множества N, которое, во-первых, содержит 0 и, во-вторых, вместе с каждым элементом x содержит непосредственно следующий за ним элемент x’, – это само множество N.

Из первых двух условий следует, что последовательность

0, 0’, 0’’, 0’’’ …

не содержит повторяющихся элементов. В самом деле, если, например, 0’’=0’’’’, то, по аксиоме 2, 0’=0’’’ и 0=0’’, что противоречит аксиоме 1. Аксиома индукции говорит о том, что элементами этой последовательности исчерпывается все множество N. Таким образом, повторяя отображение s, можно, начав с 0, добраться до произвольного x∈Nза конечное число шагов. Используя привычные обозначения 0’=1, 0’’=2, 0’’’=3, …, получаем

N= {0, 1, 2, 3, …}.

2. Метод математической индукции. Многие математические доказательства основываются на аксиоме индукции, которую можно переформулировать следующим образом.

Принцип полной индукции. Пусть P – утверждение относительно натуральных чисел n такое, что

1) P верно для n=0;

2) из справедливости P для n=k следует справедливость P для n=k+1.

Тогда P верно для всех натуральных чисел.



Замечание. Чтобы показать, что эта формулировка следует из предыдущей, достаточно рассмотреть множество A={x∈N| P верно для x}.

Для доказательства в обратную сторону, множеству A⊂Nможно сопоставить свойство P «быть элементом множества A».􀀀

О доказательствах, основанных на аксиоме индукции, говорят, что они проведены методом математической индукции. Такие доказательства имеют следующую структуру:

•устанавливается справедливость P для n=0 (посылка индукции);

•предполагается, что P справедливо для некоторого произвольного, но фиксированного n=k (индуктивное предположение);

•доказывается, что из индуктивного предположения, следует, что P верно для n=k+1 (индуктивный шаг).

Примеры.Проведем два доказательства методом математической индукции.

1) Сумма первых натуральных чисел от 0 до n включительно равна 0,5n(n+1):

0+1+…+n = 0,5n(n+1).

Доказательство. Утверждение верно при n=0: имеем 0=0,5⋅0⋅(0+1) (посылка индукции).

Предположим, что доказываемое утверждение верно для n=k (индуктивное предположение), то есть

0+1+…+k = 0,5k(k+1). Покажем, что тогда оно верно и для n=k+1, то есть

0+1+…+k+(k+1) = 0,5(k+1)(k+2)

(индуктивный шаг). Сумма во втором равенстве отличается от суммы из первого равенства слагаемым k+1. Поэтому, в силу индуктивного предположения, получаем

0+1+…+k+(k+1) = 0,5k(k+1)+k+1 = 0,5(k+1)(k+2),

что и требовалось доказать.

В соответствии с принципом математической индукции, доказываемое утверждение верно для всех n.

2) Число подмножеств множества, содержащего n элементов, равно 2n.

Доказательство. Утверждение верно при n=0: пустое множество ∅ (единственное множество, содержащее 0 элементов) имеет ровно одно подмножество ∅.

Предположим теперь, что всякое множество с n=k элементами имеет 2k подмножеств, и покажем , что множество с n=k+1 элементами имеет 2k+1 подмножеств. Пусть A – произвольное множество с n=k+1 элементами. Так как k+1>0, то A не пусто и содержит хотя бы один элемент. Пусть a∈A. Разобьем совокупность всех подмножеств множества A на два класса. В класс U входят все подмножества, содержащие a, в класс V входят все подмножества, не содержащие a:

U={X⊂A | a∈X}; V={Y⊂A | a∉Y}. Положим A’=A\{a}. Множество A’ содержит k элементов, так что по индуктивному предположению, число его подмножеств равно 2k. Но подмножества множества A’ – это в точности подмножества множества A, не содержащие a. Следовательно, |V|=2k. Пара взаимно обратных отображений U→V, X→X\{a} и V→U, Y→Y∪{a} устанавливает между U и V взаимно однозначное соответствие, так что |U|=|V|=2k. Поэтому общее число подмножеств множества A составляет

|U|+|V|=2k +2k =2k+1,

что и требовалось доказать.􀀀

Иногда принцип полной индукции применяется в следующей форме.

Пусть P – утверждение относительно натуральных чисел n такое, что

1) P верно для n=n0;

2) из справедливости P(n) для n= n0, n0+1, …, n0+k следует справедливость P(n) для n= n0+k+1.

Тогда P верно для всех n≥ n0.

Принцип полной индукции в этой форме может быть сведен к предыдущей формулировке заменой утверждения P утверждением P’: утверждение P имеет место для всех t, таких, что n0≤t≤n.

Возможны и другие модификации принципа полной индукции.

Теорема.Всякое непустое подмножество натурального ряда содержит наименьший элемент.

Доказательство. Пусть A⊂N – непустое подмножество. Возможны два случая: 0∈A и 0∉A. В первом случае 0 является наименьшим элементом множества A. Рассмотрим второй случай. Предположим, что в A нет наименьшего элемента. Пусть A’ – это множество всех таких n, что ни одно число t из промежутка от 0 до n не содержится в A. Так как 0∉A, то 0∈A’. Далее, если k∈A’, то и k+1∈A’. В самом деле, в противном случае мы имели бы 0,1,…,k∉A, но k+1∈A – а это означает, что k+1 – наименьший элемент множества A в противоречие с предположением об отсутствии такового. По аксиоме индукции множество A’ совпадает с N. Но это находится в противоречии с предположением о том, что множество A не пусто.􀀀



<== предыдущая лекция | следующая лекция ==>
Отношения | Высказывания и операции над ними


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.092 сек.