русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Предшественники


Дата добавления: 2015-07-09; просмотров: 840; Нарушение авторских прав


Идейным источником и стимулом применения логарифмов послужил тот факт (известный ещё Архимеду[23]), что при перемножении степеней их показатели складываются[24]: . Индийский математик VIII века Вирасена, исследуя степенные зависимости, опубликовал таблицу целочисленных показателей (то есть, фактически, логарифмов) для оснований 2, 3, 4[25].

Решающий шаг был сделан в средневековой Европе. Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел, а также извлечением корней. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическуюи арифметическую прогрессии, при этом геометрическая будет исходной[23]. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, упростятся также возведение в степень иизвлечение корня. Первым эту идею опубликовал в своей книге «Arithmetica integra» (1544) Михаэль Штифель, который, впрочем, не приложил серьёзных усилий для практической реализации своей идеи[26][27]. Главной заслугой Штифеля является переход от целых показателей степени к произвольным рациональным[28] (первые шаги в этом направлении сделали Николай Орем в XIV веке и Николас Шюке в XV веке).

Джон Непер и его «удивительная таблица логарифмов»

Джон Непер

В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Descriptio). В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1'. Терминлогарифм, предложенный Непером, утвердился в науке. Теорию логарифмов Непер изложил в другой своей книге «Построение удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Constructio), изданной посмертно в 1619 году его сыном Робертом.



Судя по документам, техникой логарифмирования Непер владел уже к 1594 году[29]. Непосредственной целью её разработки было облегчить Неперу сложные астрологические расчёты[30]; именно поэтому в таблицы были включены только логарифмы тригонометрических функций.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение; например, логарифм синуса он определил следующим образом[31]:

Логарифм данного синуса есть число, которое арифметически возрастало всегда с той же скоростью, с какой полный синус начал геометрически убывать.

В современных обозначениях кинематическую модель Непера можно изобразить дифференциальным уравнением[32]:

,

где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10 000 000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию , то она связана с натуральным логарифмом следующим образом[32]:

Очевидно, , то есть логарифм «полного синуса» (соответствующего 90°) есть нуль — этого и добивался Непер своим определением. Также он хотел, чтобы все логарифмы были положительны; нетрудно убедиться, что это условие для выполняется. .

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма, например:



<== предыдущая лекция | следующая лекция ==>
Связь с обратными тригонометрическими и гиперболическими функциями | Дальнейшее развитие


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.202 сек.