русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Замена переменной в тройном интеграле: цилиндрические координаты


Дата добавления: 2015-07-09; просмотров: 996; Нарушение авторских прав


В цилиндрических координатах положение точки M(x,y,z) в пространстве Oxyz определяется тремя числами − ρ, φ, z , где ρ − длина радиуса-вектора проекции точки M на плоскость Oxy, φ − угол, образованный этим радиусом-вектором с осью Ox (рисунок 1), z − проекция на ось Oz (ее значение одинаково в декартовых и цилиндрических координатах).

   
     

Цилиндрические координаты точки связаны с ее декартовыми координатами соотношениями

Здесь предполагается, что

Тогда формула замены переменных при данном преобразовании имеет вид:

Переход к цилиндрическим координатам упрощает вычисление тройного интеграла в случаях, когда область интегрирования образована цилиндрической поверхностью.

46. Замена переменной в тройном интеграле: сферические координаты

Сферическими координатами точки M(x,y,z) называются три числа − ρ, φ, θ , где

ρ − длина радиуса-вектора точки M;
φ − угол, образованный проекцией радиуса-вектора на плоскость Oxy и осью Ox;
θ − угол отклонения радиуса-вектора от положительного направления оси Oz (рисунок 1).

Сферические координаты точки связаны с ее декартовыми координатами соотношениями Следовательно, формула замены переменных при преобразовании декартовых координат в сферические имеет вид:  

 

Приложения тройного интеграла

С помощью тройного интеграла можно вычислить:

1. Объем тела и его массу

, где - объемная плотность распределения массы

2. Момент инерции однородного тела относительно, например, оси Ох



<== предыдущая лекция | следующая лекция ==>
Тройной интеграл и его свойства | образовательных учреждений г.Череповца


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.328 сек.