1°. Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2°. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3°. Постоянный множитель можно вынести из под знака интеграла, т.е. если k = const ≠ 0, то
4° . Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности.
Пример.
Найти первообразную функции , значение которой равно единице при х = 1.
Решение.
Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1. Искомая первообразная примет вид .
22) Методы интегрирования в неопределенном интеграле. Примеры.
Метод непосредственного интегрирования
Метод интегрирования, при котором данный интеграл путем тождественных пpeобpaзoвaний подынтегральной фyнкции (или выражения) и применения свойств нeoпpеделeннoгo интеграла приводится к oдиoмy или нескольким табличным интегралам, называется нeпоcpeдcтвeнным uнmeгpирoванием.
Метод интегрирования подстановкой (заменой переменной)
Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (т. е. подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводащимся (в случае «удачной» подстановки). Общих методов подбора подстановок не существует. Умение правильно oпpeделить подстановку пpиобpетaeтcя практикой.
Найти
Решение: Положим х=4t, тогда dx=4 dt. Cлeдoвaтельнo,
Метод интегрирования по частям
Пусть u=u(х) и ν=v(х) - функции, имеющие непрерывные производные. Тогда d(uv)=u•dv+v•du.
Интегрируя это равенство, получим
Полученная формула называется формулой интегрирования по частям. Она дает возможность свести вычисление интеграла к вычислению интеграла , который может оказаться существенно более простым, чем исходный.
23) Понятие определенного интеграла, его геометрический смысл. Свойства определенного интеграла. Формула Ньютона-Лейбница. Примеры.
Определение определённого интеграла. Пусть на отрезке [a,b] задана функция y = f(x). Разобьём отрезок [a,b] произвольным образом на n частей точками [x0 , x1], [x1, x2], …, [xi-1 , xi], …, [xn-1 , xn]; длину i-го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков[xi-1 , xi] выберем произвольную точку и составим сумму . Сумма называется интегральной суммой. Кратко определение иногда записывают так: .
Геометрический смысл определённого интеграла. если f(x) >0 на отрезке [a,b], то равен площади криволинейной трапецииABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху – функцией y = f(x).
11.2. Свойства определённого интеграла.
1. Линейность. Если функции y = f(x), y = g(x) интегрируемы по отрезку [a,b] , то по этому отрезку интегрируема их линейная комбинация Af(x) + Bg(x) (A, B = const), и . Док-во: для любого разбиения отрезка и любого выбора точек выполняется . Перейдем в этом равенстве к пределу при . Так как существуют пределы интегральных сумм, стоящих в левой части равенства, то существует предел линейной комбинации этих сумм, следовательно, существует предел правой интегральной суммы, откуда следует истинность и утверждения, и равенства. 2. Аддитивность. Если y = f(x) интегрируема по отрезку [a,b] и точка c принадлежит этому отрезку, то . Док-во. Если f(x) удовлетворяет условиям интегрируемости по отрезку [a,b], то она удовлетворяет условиям интегрируемости по отрезкам [a,c] и [c,b]. Будем брать такие разбиения отрезка [a,b] , чтобы точка c являлась одним из узлов xi: c = xi0, . Тогда . В этом равенстве первая сумма справа - интегральная сумма для , вторая - для . Переходим к пределу при . Пределы для всех трёх сумм существуют, и . Свойство аддитивности остаётся верным при любом расположении точек, если только функция интегрируема по самому широкому интервалу. Пусть, например, c < b < a, иf(x) интегрируема по [c, a]. Тогда, по доказанному, . Отсюда и из определения интеграла для случая, когда нижний предел больше верхнего, следует, что . 3. Интеграл от единичной функции ( f(x) = 1).Если f(x) = 1,то . Док-во. Еслиf(x) = 1 , то для любого разбиения = xn - x0 = b – a, т.е любая интегральная сумма равна длине отрезка. Предел постоянной равен этой постоянной, откуда и следует доказываемое утверждение. 4. Теорема об интегрировании неравенств. Если в любой точке выполняется неравенство , и функции f(x), g(x) интегрируемы по отрезку [a,b], то . Док-во. Для любого разбиения отрезка и любого выбора точек при . Переходя в этом неравенстве к пределу при , получаем требуемое неравенство. 5. Теоремы об оценке интеграла. 5.1. Если на отрезке [a,b] функция удовлетворяет неравенству , то . Док-во. Докажем левое неравенство (цифрами над знаками импликации обозначены номера применяемых ранее доказанных свойств): . Аналогично доказывается и правое неравенство. 5.2. Если функция f(x) интегрируема по отрезку [a,b], то . Док-во. . 6. Теорема о среднем. Если f(x) непрерывна на отрезке [a,b], то существует точка , такая что . Док-во. Функция, непрерывная на отрезке, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Тогда . Число заключено между минимальным и максимальным значениями функции на отрезке. Одно из свойств функции, непрерывной на отрезке, заключается в том, что эта функция принимает любое значение, расположенное между m и M. Таким образом, существует точка , такая что . Это свойство имеет простую геометрическую интерпретацию: если непрерывна на отрезке [a,b], то существует точка такая, что площадь криволинейной трапеции ABCD равна площади прямоугольника с основанием [a,b] и высотой f(c) (на рисунке выделен цветом).
Формула Ньютона-Лейбница.Если f(x) непрерывна на отрезке [a, b], и F(x) - некоторая первообразная функции , то . Док-во. Мы установили, что функция - первообразная непрерывной f(x). Так как F(x) - тоже первообразная, то Ф(x) = F(x) + C. Положим в этом равенстве x =a. Так как , то . В равенстве переобозначим переменные: для переменной интегрирования t вернёмся к обозначению x , верхний предел x обозначим b. Окончательно, . Разность в правой части формулы Ньютона-Лейбница обозначается специальным символом: (здесь читается как "подстановка от a до b"), поэтому формулу Ньютона-Лейбница обычно записывают так: . Пример применения формулы Ньютона-Лейбница: .
24) Методы интегрирования в определенном интеграле. Примеры
Интегрирование подстановкой (заменой переменной)
Пусть для вычисления интеграла от непрерывной функции
сделана подстановка х = φ(t).
Теорема 39.1. Если:
1) функция х = φ(t) и ее производная х' = φ'(t) непрерывны при t є [а;β];
2) множеством значений функции х = φ(t) при t є [а,β] является отрезок [а; b];
3) φ(а)=а и φ(β)=b.
то
▼Пусть F(x) есть первообразная для ƒ(х) на отрезке [а;b]. Тогда по формуле Ньютона-Лейбница Так как (F(φ(t))' = f(φ(t)) - φ'(t), то F(φ(t)) является первообразной для функции f(φ(t)) -φ'(t), t Î [а;β]. Поэтому по формуле Ньютона—Лейбница имеем
▲
Формула (39.1) называется формулой замены переменной в определенном интеграле. Отметим, что:
1) при вычислении определенного интеграла методом подстановки возвращаться к старой переменной не требуется;
2) часто вместо подстановки х = φ(t) применяют подстановку t = g(x);
3) не следует забывать менять пределы интегрирования при замене переменных!
Пример
Решение: Положим х = 2 sin t, тогда dx = 2 cos t dt. Если х=0, то t = 0; если x = 2, то t = . Поэтому
Интегрирование по частям
Теорема 39.2. Если функции u = u(х) и v = v(x) имеют непрерывные производные на отрезке [а; b], то имеет место формула
Пример
Решение: Положим
Применяя формулу (39.2), получаем
Интегрирование четных и нечетных функций в симметричных пределах
Пусть функция ƒ(х) непрерывна на отрезке [-а; а], симметричном относительно точки х = 0. Докажем, что
▼Разобьем отрезок интегрирования [-а; а] на части [-а; 0] и [0; а]. Тогда по свойству аддитивности
В первом интеграле сделаем подстановку х = -t. Тогда
(согласно свойству: «определенный интеграл не зависит от обозначения переменной интегрирования»). Возвращаясь к равенству (39.4), получим
Если функция ƒ(х) четная (ƒ(-х) = ƒ(х)), то ƒ(-х) + ƒ(х) = 2ƒ(х); если функция ƒ(х) нечетная (ƒ(-х) = - ƒ(х)), то ƒ(-х) + ƒ(х) = 0. Следовательно, равенство (39.5) принимает вид (39.3).▲
Благодаря доказанной формуле можно, например, сразу, не производя вычислений, сказать, что
25) Приложение об определенном интеграле. Вычисление площадей плоских фигур. Пример
1) Пусть функция неотрицательна и непрерывна на отрезке . Тогда исходя из геометрического смысла определенного интеграла площадькриволинейной трапеции, ограниченной кривой и прямыми (рис. 10.2) численно равна определенному интегралу:
. (11. 1)
Пример. Найти площадь фигуры, ограниченной линиями .
Решение. 1 способ. Из рисунка 11.1 видно, что искомая площадь равна: . Найдем координаты точки : , откуда для точки имеем , а для точки имеем . ; ;
2 способ. Если уравнение кривой записать в виде , то искомая площадь будет : .
2) Если функция неположительна и непрерывна на отрезке (рис. 11.2), то площадь
над кривой на отличается знаком от определенного интеграла: т.е . (11. 2)
Пример. Найти площадь фигуры, ограниченной кривой и осью абсцисс.
Решение. На рис. 11.3 приведена плоская фигур, ограниченная параболой , вершина которой находится в точке , и осью . Парабола пересекает ось в точках с координатами и . Площадь этой фигуры, согласно формулы (11.2), равна
(ед. ).
3) Теорема. Если на отрезке заданы непрерывные функции и такие, что (рис. 11.4).
Тогда площадь фигуры, заключенной между кривыми и на отрезке , вычисляется по формуле: . (11.3)
Пример. Найти площадь фигуры, ограниченной линиями:
. Решение. Из рис. 11.5 видно, что искомая площадь находится по формуле (11.3), полагая . .