русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Минимизация функции одной переменной


Дата добавления: 2015-06-12; просмотров: 741; Нарушение авторских прав


 

Поиск локального минимума функции одной переменной на некотором отрезке осуществляется командой fminbnd. Одна из модификаций fminbnd имеет вид fminbnd('file', x1,x2). Здесь

file – имя файл-функции, вычисляющей значение функции,

x1и x2 – границы отрезка изоляции локального минимума.

Первый входной аргумент можно задать как указатель на файл-функцию @»file. О других модификациях команды fminbnd можно узнать с помощью команды doc fminbnd.

Найти локальные минимумы функции e-xcos2πx на отрезке [0;2]. Создадим файл-функцию gr, вычисляющую значение функции e-xcos2πx при заданном значении аргумента x:

function y=gr(x)

y=exp(-x)*cos(2*pi*x);

Перед нахождением локальных минимумов построим график исследуемой функции командой fplot (рис. 6.3):

>> fplot(@gr,[0,2])

 

 

Рис. 6.3

На рис. 6.3 видно, что исследуемая функция имеет два локальных минимума. Вычислим значение х, при котором достигается второй локальный минимум:

>> x2=fminbnd(@gr,1.4,1.6)

x2 =

1.4749

Итак, второй локальный минимум достигается при х ≈ 1,4779.

Для одновременного вычисления значения функции в точке минимума следует вызвать fminbnd с двумя аргументами:

>> [x2,f]=fminbnd(@gr,1.4,1.6)

x2 =

1.4749

f =

-0.2260

Найдите самостоятельно остальные локальные минимумы и максимумы. Для нахождения локального максимума нет специальной функции, очевидно, что нужно искать минимум функции с обратным знаком.



<== предыдущая лекция | следующая лекция ==>
Решение уравнений и их систем | Минимизация функции нескольких переменных


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.