Одним из видов ошибок дискретной реализации является погрешность округления за счет конечного числа разрядов ЭВМ. Погрешность округления возникает при делении, умножении, возведении в степень, в случае выполнения трансцендентных операций ( таких, как логарифмирование), тогда неизбежно приходится ограничивать количество значащих цифр, т.е. производить округление промежуточных результатов.
Применяемые при решении моделей численные методы вносят погрешность, связанную с заменой бесконечного вычислительного процесса конечным и называемую погрешностью данного метода или методической ошибкой. Например, производная заменяется конечной разностью, интеграл – суммой и т.п. Эти погрешности обусловлены ошибками численного интегрирования дифференциальных уравнений, итерационных процедур поиска экстремума, решения системы алгебраических уравнений и многими другими ошибками, которые сопровождают процессы реализации математических моделей на ЭВМ. Погрешности этого вида изучаются в численных методах математического анализа и математического программирования, где выводятся их оценки, например остаточный член формулы квадратур, остаточный член интерполяционной формулы.
Замена непрерывных величин дискретными при численном исследовании процессов на ЭВМ также приводит к погрешностям, величина которых зависит от шага дискретизации. Количественную оценку составляющих этих погрешностей удается провести на уровне относительно автономных частей математической модели – модулей, реализующих данный численный метод. При разработке модулей стремятся выбрать такие методы дискретной реализации, которые на основании имеющихся сведений позволяют утверждать, что погрешности моделирования не будут превышать заданных величин. В процессе испытания модели справедливость этих априорных утверждений в ряде случаев можно проверить с использованием результатов проведенных экспериментов.