8086. Первым процессором для серии персональных компьютеров был процессор, который назывался 8086 и был создан в 1978 году. Часто компьютеры с этим процессором называют PC XT (произносится как пи си икс ти). Данный процессор имеет внутреннюю и внешнюю разрядность для данных - 16, для адреса - 20 разрядов и тактовую частоту от 4,77 до 10 Мгц (мегагерц). Внутренняя разрядность означает, с какой разрядностью выполняются логические и арифметические операции.Внешняяразрядность обозначает количество разрядов, по которым процессор может адресовать данные по внешней шине (216 = 64 Кб). Она разделяется на: шину данных, то есть количество линий, по которым передаются данные, и шину адреса, - количество линий, по которым передаются адреса. Благодаря сегментной организации памяти (один сегмент равен 64 Кб, а количество непересекающихся сегментов равно 16) можно адресовать значительное количество памяти, которая в 8086 процессорах достигала 1 Мб (или 220 = 1 Мб). Одна операция выполнялась за несколько тактовых операций, поэтому общая производительность составляла менее 1 млн. операций в сек.
Следующий параметр - тактовая частота работы процессора. Чем она больше, тем быстрее работает процессор. Например, если тактовая частота одного процессора равняется 10 Мгц, а другого 4,7, то первый работает в 10/4.7=2.12 раза быстрее. Это относится только к процессорам, так как производительность самого персонального компьютера в целом зависит от многих параметров. Однако одним из основных как раз и является частота процессора. Иногда компьютер с процессором большей частоты работает медленнее, чем с меньшей. Это происходит из-за того, что другие характеристики значительно хуже, но это встречается довольно редко и в дальнейшем будет более подробно описано. Если имеется старый тип компьютера, то модернизировать его невыгодно, так как придется менять очень много устройств, поэтому проще приобрести новый компьютер.
Далее в тексте приведены основные типы процессоров, при этом год их выпуска указан приблизительно, так как дата выпуска является условной и может означать: дату, когда был разработан процессор, когда выпущен тестовый экземпляр или когда начался его массовый выпуск.
В 1979 году был выпущен процессор 8088, который являлся аналогом процессора 8086, был дешевле, но имел внешнюю шину данных 8-бит, а не 16 бит, то есть пересылка происходила за два такта. Поэтому он работал медленнее.
80286 (или просто 286). Процессор 80286 начал выпускаться в 1982 г., внутренняя разрядность и внешняя, а также адресная шина имели 16 разрядов, шина данных - 24 разрядов, с адресацией до 16 Мб (224) и частотой 12-20 Мгц. Часто этот вид компьютеров назывался PC AT (произносится как «пи си эй ти»). В этом процессоре добавилось несколько новых машинных команд, появился защищенный режим, который осуществлялся аппаратными средствами. Процессор также поддерживал реальный режим, который использовался в процессорах 8086, появилось средство контроля перехода за границу сегмента. Однако существовали трудности при переходе из защищенного в реальный режим, которые были преодолены только в 386 процессоре.
Отметим, что математическое (то есть программное) обеспечение каждого следующего вида совместимо, то есть программа будет работать на компьютере более поздних типов, но не наоборот. Это значит, что программа, работающая с процессором 386 типа, будет работать на процессорах типа 486 и Pentium, но может не работать на процессорах типа 286.
80386 (или просто 386). Процессор 80386 создан в 1985 году, стал уже 32-разрядным (внутренняя разрядность, внешние шины данных и адресации) и мог адресовать до 4 Гбайт (232) оперативной памяти и 64 Гбайт виртуальной; тактовая частота могла быть от 16 до 40 Мгц. На материнской плате стала устанавливаться кэш-память, доступ в которой к процессору быстрее, чем по системной шине, что увеличивает производительность компьютера. В процессоре появился режим виртуального процесса 8086, при котором один процессор может работать с несколькими независимыми задачами, которые работают так же, как в режиме реального времени. При этом использование памяти управляется аппаратными средствами процессора. Кроме того, на материнской плате появилась кэш-память.
В силу того, что первоначально цена на эти модели была достаточно высокой, был изготовлен процессор 386SX, который был дешевле, но содержал не 32, а 16 разрядов внешних данных. 32-разрядные процессоры называются 386DX. Для переносных компьютеров использовались модели SL и SLC с пониженным энергопотреблением.
80486. Процессор 486 остался 32-разрядным (внутренняя разрядность, внешние шины данных и адресации) с той же адресацией - 4Гбайт (232) и частотой от 25 до 133 Мгц. Был создан в 1989 году. Одним из основных новшеств данной модели является наличие внутренней кэш-памяти в самом процессоре (или кэш-память первого уровня) для данных и команд, увеличивающее производительность процессора. Дело в том, что данные передаются по системной шине между оперативной памятью и процессором. Если первые процессоры (8086) обрабатывали команду за несколько тактов системной шины, то теперь за один такт выполняется несколько команд. За один такт системной шины процессор может передать одно данное или команду и выполнить несколько команд при наличии кэш-памяти в самом процессоре. Можно вызвать данные за один такт процессора, так как кэш-память работает на тактовой частоте процессора, то есть делает несколько тактов во время одного такта системной шины. Таким образом, в результате снижается вероятность простоя процессора. Чем больше размер кэш-памяти, тем быстрее будет работать процессор. Многие модели содержат 2, 8, 16 Кбайт этой памяти. Кроме того, организован механизм конвейеризации вычислений.
Машинная инструкция состоит из нескольких микрокоманд, которые нужно обработать. Поэтому, грубо говоря, когда одна команда выполняется, другая транслируется, а третья подается на вход. На самом деле может существовать большее количество ступеней обработки команд и большее число конвейеров. Поэтому после выполнения текущей команды следующая команда готова для выполнения и время работы компьютера с командами сокращается. Одной из основных проблем здесь является предсказание команд, которые будут выполняться следующими. Как правило, это следующая команда, которая располагается за выполняемой. Однако в программе существуют переходы и число их бывает значительным, например, в цикле, когда одна и та же последовательность команд выполняется несколько раз. Имеется специальный блок, который с определенной степенью вероятности предсказывает, какая команда будет выполняться следующей, и от этой степени зависит производительность компьютера. В настоящее время обеспечена достаточно высокая степень предсказаний, которая больше 90 процентов, иногда приближаясь к 99 процентов, что улучшает работу компьютера. Кроме того, добавлено несколько новых команд, введены буферы отложенной записи, включена защита страниц памяти от записи, возможности тестирования процессора и пр., что приводит к увеличению производительности даже при такой же тактовой частотой, что и у 386 процессоров.
Одним из отличий данного вида процессоров от предыдущих является наличие встроенного сопроцессора в одном корпусе. Обычный процессор выполнял операции с целыми числами. Чтобы выполнить операции с плавающей точкой (или с дробными, например, 17,35 х 8,76), вместо одной команды процессор, работающий с целыми числами, должен выполнить несколько команд, что замедляет работу компьютера. В работе программ научных расчетов используется много операций с плавающей точкой, поэтому для ускорения работы необходимо монтировать на материнскую плату специальный сопроцессор, который специализируется на обработке именно этих чисел и ускоряет работу. Однако для серии 486 сопроцессор был уже совмещен в одном корпусе вместе с процессором. Вначале такой процессор был достаточно дорог и назывался DX. Для того, чтобы снизить его стоимость, был разработан процессор без встроенного сопроцессора, получивший имя 80486SX (тактовые частоты 16-33 Мгц). Затем была выпущена следующая модель, у которой тактовая частота в два раза выше, чем системная шина с названием 80486DX2 (рабочие частоты процессора: 50-66) и соответственно выше в 3-4 раза с названием 80486DX4 (75-133). Например, процессор (DX2) с частотой 66 Мгц работает с системной шиной 33 Мгц и выполняет две команды за один системный такт, (DX4) с частотой 100 Мгц работает с шиной 33 Мгц и выполняет три команды за один такт. Для переносных компьютеров используется модель SL с пониженным энергопотреблением.
Процессоры 486 серии устанавливались в сокет 1 с количеством контактов по бокам матрицы 17 х 17, а также сокет 2,3,4 с матрицей 19 х 19. Процессоры 486 и серии Pentium имеют большее энергопотребление (для 486 - 5 вольт) по сравнению с 80386 и в силу своих размеров могут перегреваться, поэтому для охлаждения над ними стал устанавливаться специальный вентилятор, который охлаждает его. Этот вентилятор не нужно снимать - это может привести к перегреву процессора и соответственно к его поломке.
Pentium (или 586, или Р5) создан в 1993 году и имеет тактовые частоты: 60, 66, 75, 90, 100, 120, 133, 150, 166, 200 Мгц. Внутренняя разрядность - 32, внешней шины данных - 64 и адресной шины данных - 32, с той же адресацией - 4Гбайт (232). Процессоры становятся все более и более сложными по количеству элементов, число которых составляет уже миллионы. Чтобы поместить их на одну плату небольшого размера, используется технология CMOS, причем размер элементов становится все меньше и меньше. Первые модели процессора Pentium (Pentium 60 и 66) выпускались в корпусе SPGA с 273 контактами, устанавливались в сокет 4, с минимальным размером СМОS- технологии 0,8 мкм, и их называют процессорами первого поколения. Рассчитаны они были на 5 вольт, поэтому сильно нагревались. Чем больше напряжение, тем сильнее нагревается процессор. Остальные типы процессоров уже относятся к второму поколению, называются Р54С, имели 0,6 и 0,35 мкм технологию, используют 3,3 вольт и меньше. Они имеют 296 контактный корпус SPGA, устанавливаются в сокет 5 и 7, и работают быстрее, чем системная шина, в отличие от процессоров первого поколения. Кроме того, у процессоров второго поколения имеется возможность значительного снижения энергопотребления в нерабочем состоянии и значительно усовершенствован сопроцессор.
Во всех моделях этого процессора имеется встроенный кэш первого уровня, который находится внутри процессора. Кроме того, он был увеличен до 16 килобайт и разделен на две части: одна для хранения данных, а другая - для хранения инструкций (команд). Кэш-память увеличивает производительность процессора за счет того, что обращение к ней происходит быстрее, чем к оперативной памяти.
Процессор Pentium, помимо высокой тактовой частоты, способен одновременно выполнять три операции: две с простыми числами в блоке самого процессора и одну с плавающей запятой в сопроцессоре, то есть имеет три модуля для обработки команд.
В дальнейшем развивался принцип, называемый спекулятивным или динамическим выполнением, при котором имеется механизм предугадывания следующей команды. Чем точнее предсказание, тем быстрее работает процессор. Примером цикла может служить последовательность обработки пикселов на экране по горизонтали. Одни и те же команды могут обрабатывать один пиксел, затем следующий, и так до конца строки. Другой цикл может обрабатывать строчки, вначале первую, затем вторую и так далее, до конца экрана.
При работе с двумя конвейерами можно написать программу, которая будет иметь две ветви, причем каждая из ветвей независима от другой, то есть создать так называемое поточное исполнение программ. Если вновь взять для примера экран, то обрабатывается независимо друг от друга верхняя и нижняя части экрана.
В последнее время для повышения производительности начали использовать приоритет посылки данных из оперативной памяти в центральный процессор перед операцией записи в нее. Это логически ясно: если процессору требуются данные для текущей операции, то он их не станет ждать, а если бы он их ждал, то находился бы в состоянии простоя.
Как уже говорилось, в данном виде процессоров реализован принцип конвейерной обработки, что позволяет обрабатывать несколько команд одновременно. При этом часть процессора, которая занимается декодированием инструкций и подготовкой данных, называется предпроцессором, собственно процессором можно назвать ту часть микросхемы, которая выполняет сами операции, и постпроцессором - ту часть процессора, которая передает полученные данные.
Как правило, ранние поколения процессоров назывались 286, 386, 486. Следовало ожидать, что следующий тип будет называться 586. Однако компания Intel, которая была первой в разработке типов процессоров, решила изменить название на нечто новое, с тем чтобы конкуренты не смогли использовать это название. Так появилось название Pentium. Основные конкуренты-производители процессоров компании Cyrix и AMD начали создавать процессоры со своими именами. Так появилось название 586 компании AMD, которая стоит дешевле, чем аналог Pentium компании Intel. В результате компания Intel вынуждена продавать свои процессоры также дешевле.
В целом, сравнивая процессоры разных компаний, можно убедиться, что они примерно равны по своим мощностям и возможностям. Трудность сравнения заключается в том, что имеются разные программы: одни используют в основном целочисленные логические вычисления, в других программах совершаются в основном арифметические операции, в третьих происходит пересылка большого количества данных. Имеются процессоры, которые на некоторых задачах лучше всего предсказывают, какие данные хранить в кэш-памяти первого уровня, чтобы не простаивал процессор, и так далее. Кроме того, программы могут работать с разной скоростью в разных операционных системах, таких, как ДОС и Windows, поэтому сравнение часто бывает условным.
Аналогично появился процессор 686 компании Cyrix, как следующее поколение процессоров. Это процессор, находящийся по возможностям между Pentium и Pentium Pro, ближе к 586 и устанавливается на плате в разъем, разработанный для процессора Pentium. Процессор Pentium имеет 64-разрядность (для внешней шины данных) и тактовую частоту от 60 Мгц до 200 и выше. Хотя энергопотребление снижено до 3,3 вольт и ниже, в силу увеличения количества работающих элементов он тоже требует установки вентилятора. Внутренний кэш уже больше и разделен на кэш для данных и кэш для команд. Их размеры у различных компаний-производителей неодинаковые и со временем увеличиваются.
В процессоре компании Intel дополнительно увеличено количество ступеней конвейера вычислений до пяти ступеней, два конвейера для обработки команд, то есть параллельно могут обрабатываться две команды, и он стал суперскалярным (был одноконвейерным или скалярным). Имеется буфер для предсказания переходов, в котором хранятся данные о последних 256 переходах (передачи управления), раздельный кэш команд и данных, более быстрый сопроцессор, введены средства управления энергосбережением, имеются и другие новшества, которые убыстряют работу данного процессора.
В процессорах компании AMD имеется 4 конвейера, большая кэш-память и некоторые другие возможности, в то же время он дешевле, чем процессор компании Intel. Для процессоров данной компании имеется другой критерий установки тактовой частоты. Процессор проверяется по производительности, используя специальный тест, затем выбирается наименьший результат среди процессоров Pentium по производительности. Данное значение и присваивается процессору компании AMD, например, Х5-100 выше по производительности, чем Pentium-100, но слабее, чем Pentium-120 (следующее значение среди процессоров серии Pentium по тактовой частоте).
Второй наиболее известной компанией, выпускающей процессоры для персональных компьютеров, является компания Cyrix, которая выпускает процессоры с названием Cyrix 6х86, стабильно работает как с 16-разрядными, так и с 32-разрядными приложениями. Отметим, что для обыкновенного пользователя вполне достаточно использовать компьютер с довольно небольшой тактовой частотой. Как правило, большая производительность требуется для игр.
Pentium ММХ создан в 1997 году и имеет тактовые частоты: 166, 200, 233. Следующей моделью серии Pentium стал процессор Pentium с приставкой ММХ (Pentium ММХ - произносится «Пентиум эм-эм икс»), созданный компанией Intel и часто называемый мультимедиа. Процессоры предыдущих поколений обрабатывают одно данное в текущий момент времени и не могут обрабатывать несколько одновременно. Для того, чтобы убыстрить работу, были введено 57 новых инструкций и восемь 64-разрядных регистров (машинных команд), которые могут обрабатывать несколько данных в одной команде, что особенно важно для программ, работающих с изображением и звуком.
Принцип работы данного вида процессоров следующий. Несколько однотипных данных соединяются вместе до 64-разрядного целого числа и одной командой за один такт обрабатываются одновременно. Например, если данное имеет длину 16 разрядов, то одновременно можно выполнить 4 (64=4*16) однотипных операций. Отметим, что данные для команд ММХ помещаются в регистры процессора с плавающей запятой, а не в общие регистры. Процессор, позволяющий работать с ними, назван ММХ.
Кроме того, в процессоре кэш для команд и данных увеличен в два раза и составляет по 16 Кбайт, увеличена длина конвейера до 6 ступеней, блок предсказаний взят у Pentium Pro, появился встроенный тест для работы процессора, имеются другие улучшения структуры процессора. Блок предсказаний может быть статическим, то есть предсказывать по определенным алгоритмам, и динамическим, то есть осуществлять анализ предыдущих ветвлений. В данном процессоре одновременно применяются статический и динамический блоки предсказаний переходов.
Другие компании также используют те же символы для обозначения своей продукции с набором расширенных команд. По этому поводу произошло судебное разбирательство между компанией Intel и ее конкурентами. Компания Intel проиграла этот процесс, и ее конкурентам разрешили использовать наименование ММХ на том основании, что это не торговая марка, а название продукции, имеющее определенные возможности. Поэтому сейчас можно встретить названия типа М2 (686 ММХ), К6-200ММХ и другие, где присутствует приставка ММХ. Материнская плата для Pentium ММХ такая же, как и для Pentium, однако содержит дополнительный разъем для питания процессора.
Для работы процессора с ММХ необходимо, чтобы программа могла использовать расширенные команды. Если программа создана в 1996 году и ранее, то вряд ли процессор будет работать с такими расширенными командами. Может ли программа, использующая дополнительные инструкции, работать с процессором Pentium без приставки ММХ? Как правило, да. Программа обычно определяет: работает ли процессор с набором команд ММХ, если нет, то будут использоваться обычные команды, однако это приведет к большему времени работы компьютера.
8 новых регистров - регистры сопроцессора. В сопроцессоре имеются регистры, которые имеют 16 бит, определяющие степень числа (экспонента) и 64 бита для мантиссы (значения после запятой). Команда мультимедиа использует 64-разрядную часть регистра, в которую можно поместить данные и их обработать. Например, если цвет пиксела на экране кодируется при помощи 8 бит, то в регистр можно поместить данные о восьми пикселах и обработать их одновременно. В то же время, при операциях с числами с плавающей запятой сопроцессор переключается в этот режим и начинает выполнять эти операции. При возникновении необходимости работать опять с командами ММХ снова происходит переключение. Операция переключения требует некоторого времени, что может замедлять работу процессора, но, если это происходит не часто, то в целом получается выигрыш по времени.
Таким образом, при работе с обычными данными производительность процессоров ММХ будет на 10-15% выше, чем простых процессоров Pentium. Программы, использующие возможности ММХ (в основном игры, просмотр видеофильмов, создание векторных рисунков), работают еще быстрее. Процессор ММХ выпускается по 0,35 мкм технологии, требует 3,3 и 2,8 вольт напряжения.
Для процессора используется специальное гнездо под названием Socket 7 (гнездо 7) или иначе называемое 7 ZIF (Zero Insertion Force 7 - вставка с нулевым усилием), требует 2 номинала напряжения питания и соответствующего программного обеспечения BIOS. Данный разъем используется и другими компаниями.
Pentium Pro создан в 1995 году и имеет тактовые частоты: 150, 166, 180, 200 Мгц. Внутренняя разрядность - 32, внешней шины данных - 64 и адресной шины данных - 36. Имеет кэш-память 1-го уровня для команд - 8 Кб и для данных - 8 Кб, включает встроенную в корпус кэш-память 2-го уровня, объем которой доходит до 1 мегабайта, повышенную устойчивость к сбоям, внутренний усовершенствованный сопроцессор, алгоритм предсказания ветвлений и другие возможности. В силу того, что этот процессор достаточно дорог, в домашних условиях и в небольших компаниях он используется редко.
Отличие этого процессора от процессора Pentium заключается в том, что, помимо встроенного кэша в процессор, он имеет кэш, который находится рядом с процессором в одном корпусе. Поэтому для передачи данных от процессора к кэш-памяти и обратно используется специальная шина данных. Если вначале кэш, встроенный в процессор или находящийся с ним в одном корпусе, назывался кэш-памятью первого уровня, а на материнской плате – 2-го уровня, то затем произошел переход к новому понятию, когда кэш, который находится в процессоре, называется кэшем первого уровня, кэш, который находится в корпусе с процессором и соединен шиной данных – 2-го уровня, тот, что находится на материнской плате – 3-го уровня.
В процессоре использован принцип динамического (или продуманного) исполнения, который позволяет выполнять следующие за текущей инструкции. Если команда, которая должна быть выполнена следующей, угадана правильно, то время выполнения команд может быть убыстрено, если не угадана, то следующая инструкция будет выполняться заново. Как правило, процент угадывания инструкций достаточно высок.
Процессор имеет 14 ступеней конвейерной обработки вычислений, три конвейера, высокую вероятность предсказания переходов в программе. Если переход предсказан неправильно, то буфер с результатами очищается. Данный процессор лучше всего работает в системе Windows NT, не дает особенных преимуществ при работе с 16-разрядными приложениями и быстрее примерно на 20-30 % по сравнению с Pentium для 32-разрядных приложений. Для данного типа процессоров используется специальная материнская плата, которая не подходит для процессоров Pentium, в которой используется сокет 7.
Pentium II создан в 1997 году на основе Pentium Pro с возможностями ММХ и имеет тактовые частоты: 233, 266, 300, 333, 350, 400, 450 Мгц, двойную независимую шину (Dual Independent Bus), улучшающую пропускную способность шины, встроенный механизм самотестирования, дополнительные режимы пониженного потребления и другие возможности. Тактовая частота кэш-памяти 2-го уровня вдвое меньше тактовой частоты процессора. У процессора Pentium Pro тактовая частота совпадала с тактовой частотой процессора. Для процессора с кэш-памятью 2-го уровня был разработан специальный SECС- картридж (Single Edge Contact Cartridge – картридж с односторонним контактом), в котором разместили процессор и кэш-память 2-го уровня. При этом кэш-память 1-го уровня увеличила свой объем.
Картридж так назван потому, что выводы на нем расположены вдоль одной стороны. Кроме того, из-за многочисленности контактов, чтобы они плотно входили в паз, стали использоваться ZIF гнезда (Zero Insertion Force - нулевая сила вставки) с рычажком, при помощи которого можно зажать контакты. Если раньше разъем, куда вставляется процессор, назывался Socket 1, 2, 3, 4, 5, 6, 7, 8, то теперь название разъема стало называться Slot 1, который имеет 242 контакта. Все права на разработку данного разъема находятся у компании Intel, поэтому другие производители процессоров используют свои гнезда Socket, как правило, Socket 7.
Заметим, что процессор, спроектированный для одного вида разъема, в другой разъем не вставляется, поэтому при покупке материнской платы и процессора нужно убедиться в их соответствии.
Отличие от предыдущих процессоров заключается в использовании двух системных шин, одна между CPU и памятью RAM, вторая между CPU и кэш-памятью второго уровня, что позволило увеличить тактовую частоту шины с 66 Мгц до 100 Мгц (тактовые частоты процессоров 350, 400, 450 гц). Сам процессор располагается в специальном контейнере (SEСC-картридже), в котором находится процессор и кэш-память (512 кб), между которыми имеется специальная рабочая шина, работающая на половинной частоте процессора, и имеет код исправления ошибок (ЕСС). На корпусе процессора установлен вентилятор, а для подключения к материнской плате используется специальный новый разъем, который называется Slot 1.
Данный процессор использует отдельную шину для видеокарт AGP (Advanced Graphics Port – расширенный графический порт). Другие характеристики, включающие в себя: количество ступеней конвейеров (3) и предсказание переходов - аналогичны системе Pentium Pro. Pentium II Xeon характеризуется большим объемом кэш-памяти, которая работает на одной тактовой частоте вместе с процессором. Для установки процессора используется Slot, который имеет 330 контактов, расположенных на трех уровнях.
В 1998 годах выпущен процессор Celeron I с тактовыми частотами: 266, 300, 333, 366, 400, 433, 466, 500, 533, далее Celeron II 566, 600, 633, 667, 700, 733, 766, 800, 850, 900, который аналогичен процессору Pentium II ММХ, но не имеет или имеет меньшую кэш-память второго уровня, чем процессоры Pentium II. Модель Covington имеет встроенную кэш-память 32 кбайт, работает на частоте системной шины 66 Мгц; модель Mendocino имеет встроенную кэш-память 128 кбайт, работает на частоте системной шины 66 Мгц; модель Coppermine имеет встроенную кэш-память 128 кбайт, работает на частоте системной шины 66 Мгц, устанавливается для картриджа SECC в Slot 1, а PPGA в Celeron Socket. По параметру производительность/цена он имеет не лучший показатель в самых первых моделях, но неплохо зарекомендовали себя в последующем, включая самые последние модели. Преимуществом покупки данного процессора является возможность замены в будущем на новый процессор, так как не требуется смены других компонентов (например, материнской платы, памяти).
Celeron является удешевленным вариантом процессора Pentium II. Первые процессоры выпускались без встроенной кэш-памяти, однако из-за резкого падения производительности ее со временем стали устанавливать, но меньшего объема, учитывая, что для повышения производительности требуется небольшое количество этой памяти (128 Кбайт), а при ее резком увеличении производительность возрастает на небольшую величину. Поэтому наличие небольшого объема кэш-памяти оправдано. Кроме того, эти процессоры выпускались для работы с системной шиной 66 Мгц, а не 100, и расположены они в SEPP, устанавливающийся в Socket 370, который имеет 370 контактов и конструктивно представляет собой прямоугольник, как и разъем Socket 7.
Pentium III (1999 г.) представляет собой дальнейшее развитие процессоров и позволяет работать с новым видом инструкций SIMD (Single Instruction Multiple Data - одиночная инструкция над одиночными данными, также называемая MMX2, KNI (Katmai New Instructions – новые команды Katmai)), которые работают с данными с плавающей запятой. Pentium III имеет старое название Katmai, является модификацией Pentium II. Данные операции повышают производительность трехмерной графики и видеоприложений. Кроме того, компания Intel осуществила переход на 0,18 мкм технологию (серииCoppermine и Xeon). Имеет тактовую частоту 533, 550, 600, 650, 667, 700, 733, 750, 800, 850, 866, 933, 1 000, 1 130, 1 200 и выше с частотой системной шины 100-133 Мгц, устанавливаются в корпусе PPDA в Socket 370 и SECC в Slot 1.
Для использования команд SIMD используются дополнительные 128-разрядные регистры. В этих регистрах можно одновременно выполнить несколько целочисленных операций или операций с плавающей запятой. Кроме того, имеются операции, специально предназначенные для кодирования и декодирования изображений, например, вычисление среднего значения из нескольких.
После того, как компания Intel ввела команды ММХ, компания AMD создала набор команд 3DNow!, которые повышают производительность компьютера, особенно для трехмерных задач в играх. Другие компании (Cyrix и пр.) также присоединились к этой технологии и стали выпускать процессоры, которые поддерживают данный набор команд, а компания Microsoft обеспечила поддержку этих команд в системе Windows. В ответ на эту разработку компания Intel и ввела новый набор команд SSE (Streaming SIMD Enhanced - потоковое расширение).
Возможности дополнительных наборов команд используются в основном в игровых программах, в других программах довольно редко, а 3DNow! используется более активно, так как входит в систему Windows.
Pentium II имел несколько видов процессоров, которым дали наименование при их разработке, это: Klamath, Deshutes, для Pentium III – Katmai, Coppermine, Tanner, Cascades, для Celeron – Covington, Mendocino, Coppermine. Pentium IV с тактовой частотой 1,4 Ггц имеет название Willamate, имеет кэш-память 1-го уровня 256 Кб, второго 512-1024 Кб, использует системную шину 100 Мгц и 133 Мгц, которая передает за один такт несколько данных. Таким образом, пропускная способность шины 133 Мгц достигает 3,2 Гбайт/сек, вставляется в Socket 462. Вышеописанные процессоры выпускаются в основном компанией Intel. Другие компании также выпускают свои процессоры, причем их параметры не сильно отличались для 86, 286, 386. Однако в 486 расхождения стали увеличиваться.
Процессоры, выпускаемые компанией-производителем, могут со временем корректироваться, то есть в них вносятся улучшения и выпускаются новые подверсии, однако пользователю они мало что говорят, и, как правило, о них не пишут.
Pentium IV (2001 г.) представляет собой дальнейшее развитие процессоров на основе гиперконвейерной обработки с глубиной на 20 стадий, улучшенное предсказание переходов, имеет блок быстрого выполнения команд (Rapid ExecutionEngine) и скорость системной шины 400, 533, 800 Мгц. Кэш-память первого уровня содержит 8 кб (16кб для процессоров по 0.09 нм технологии), второго – 256 Кб (512 кб для процессоров по 0.13 нм технологии), отслеживает выполнение команд (Execution Trace Cache). Кэш-память второго уровня работает на половинной частоте центрального процессора. Частоты процессора бывают 1 300, 1 400, 1 500, 1 800, 1 900, 2 000, 2 200, 2 400, 2 600, 2 800, 3 00, 3 060, 3 200, 3 400 и более Мгц.
Отметим, что цифры частоты системной шины не соответствуют действительной частоте шины. Так, когда говорится о частоте 533 Мгц, то на самом деле она равна 133 Мгц, но за один такт посылает не одно данное, а четыре. Поэтому за одну секунду можно передать 133 * 4 = 532 миллионов бит, что округляется до 533 Мгц, что удобнее. На самом деле передача четырех данных за один такт по 133 Мгц шине несколько медленнее, чем передача одного данного по 533 Мгц шине. Происходит это из-за того, что при передаче возможны случаи, когда за один такт можно передать только одно данное, например, управляющий символ. Практически все частоты свыше 200 Мгц являются либо удвоенными, либо учетверенными от начальной частоты.
В последних моделях этих процессоров все чаще применяется новая технология, называемая Hyper-Threading, впервые примененная компанией Intel. Еще эту технологию называют «многопотоковой». Эти процессоры устроены таким образом, что операционная система видит не одно устройство, а как бы два, что позволяет выполнять многие приложения одновременно. Без этой технологии каждая программа выполняется последовательно и ожидает своей очереди на ресурсы процессора. Теперь, при совершении сложных вычислений, не происходит простоя в работе программ. Оптимально данная технология может использоваться в системе Windows ХР и более новых системах. В системе Windows 2000 после установки нового процессора, желательно заново установить операционную систему. В системах Windows 98 и Windows МЕ желательно в BIOS отключить функцию Hyper-Threading. Для того, чтобы узнать включена ли эта функция, нужно просмотреть указаны ли два процессора в режиме Пуск →Панель управления →Система →Оборудование →Диспетчерустройств →Процессоры.
Процессоры Pentium IV, изготовленные по 0,09 нм технологии, поддерживают новый вид команд SSE3, в которых добавлены 13 новых команд. Процессоры поставляются вместе с вентилятором и наклейкой, на которой находится номер и марка процессора. Это сделано для того, что номер и марка процессора под вентилятором не видны. Наклеив наклейку на системный блок, можно без труда определить параметры процессора.
Здесь есть определенные ограничения. Многие тесты, запущенные на таких процессорах, позволяют с определенной степенью достоверностью утверждать, что прироста производительности при использовании наиболее распространенных программ, как Microsoft Word или Microsoft Excel не обнаруживается. Однако, при запуске программ со значительным количеством вычислений, требующих одновременной работы процессора, например, при применении фильтров в программе Adobe Photoshop, выигрыш может быть весьма значительным.
Mobile Pentium 4-M создан для ноутбуков в 2002-03 годах. (0.13 мкм, транзисторов 55 млн), кэш второго уровня 0.5 Мб, пропускная способность шины 400 Мб/с, поддерживает до 1 гигабайта оперативной памяти. Частоты – 1.4 – 2.6Ггц.
Pentium 4EE выпущен в 2003 году на основе Penrium 4 (Gallatin), но с 2 мб кэш.
Pentium 4E выпущен в 2004 году (0.09мкм или 90 нм). Пропускная способность шины 533 и 800 Мгц (поддерживает Hyper-Threading). Наборы инструкций: x86, x86-64, MMX, SSE, SSE2, SSE3, кэш второго уровня 1-2 МБ. Длина конвейера целочисленных команд увеличена с 20 до 31 ступеней.
Pentium 4F представлен в 2004 году. Частота 3,2—3,6 ГГц.
До этого момента были описаны процессоры с 32битной архитектурой, далее идут с 64-битной архитектурой.
Pentium 4F, D0, D представлены в 2004-5 году, имеют микроархитектуру NetBurst. Отсутствует технология Hyper-Threading. Процессор двухъядерный (Dual-core), пропускная способность шины: 800 (4x200) Мб/с, частота процессора 2,8—3,4 ГГц, кэш L2: 2-4 МБ. Производительность данных процессоров увеличилась примерно на 60 % по сравнению с одноядерным микропроцессором Prescott.
Pentium Extreme Edition имеет двухъядерный (Dual-core) процессор, поддержку Hyper-Threading, пропускная способность шины: 1066 (4x266) Мб/с, частота процессора 3.2, 3.46, 3.73 Ггц (90 или 65 нм). Кэш второго уровня 2-4 Мб.
Xeon был представлен в 2004-6 годах. Имеет модели: Nocona, Irwindale, Cranford, Potomac, Paxville DP (2.8 ГГц), Paxville MP (двухядерный, 90 нм, частота процессора 2.67 - 3.0 ГГц), Dempsey (65 нм, частота процессора 2.67 — 3.73 ГГц, представлен в 2006 году, двухядерный, шина 667 или 1066, кэш – 4 мб), Woodcrest (65 нм, двухядерный процессор, поддержка SSE4, частоты 1.6-3.0 Ггц, кэш второго уровня 2Мб, пропускная способность шины 1066, 1333 Мб/с), Clovertown (65 нм, четырехъядерный Quad-Core процессор, SSSE3, частота процессора 1.6 – 2.66, пропускная способность шины 1066, 1333 Мб/с),
Pentium Dual-Core создан в 2006 году (32 битная архитектура) (65нм=0.065мкм) (Yonah). Пропускная способность шины 533 МГц, частота 1.60; 1.73; 1.86 Ггц. Кэш второго уровня 1-2 Мб, (Xeon LV) (Sossaman) пропускная способность шины 667 Мб/с, кэш второго уровня 2 Мб, частота 2.0 Ггц SSE3 SIMD инструкции.
Intel Core 2 имеет модели: Conroe (65 нм, представлен в 2006 году, SSE3, частота процессора 1.86 – 3.0, 2-4 Мб кэш второго уровня, пропускная способность шины 1066, 1333 Мгц), Allendale (65 нм, представлен в 2007 году, SSE3, частота процессора 1.6 – 2.6 Ггц, пропускная способность шины – 800 Мб/с, кэш второго уровня 2 Мб, Conroe XE (65 нм, представлен в 2006 году, частота процессора 2.93, 3.2 Ггц, пропускная способность шины – 1066 Мб/с, кэш второго уровня 4 Мб), Merom (для ноутбуков, 65 нм, представлен в 2006 году, частота процессора 1.06 - 2.6 Ггц, пропускная способность шины – 533 - 800 Мб/с, кэш второго уровня 2-4 Мб), Kentsfield (65 нм, четыре ядра (Quad Core), представлен в 2006 году, частота процессора 2.4 - 3.0 Ггц, пропускная способность шины – 1066 - 1333 Мб/с, кэш второго уровня 2-4 Мб), Wolfdale/Yorkfield (45 нм, SSE4.1, двух и четырехядерный, представлен в 2007-8 годах частота процессора 2.53 - 3.33 Ггц, пропускная способность шины – 1066, 1333 Мб/с, кэш второго уровня 3-12 Мб),
Pentium Dual Core имеет модели: Merom-2M (65 нм, для ноутбуков, представлен в 2006 году, частота процессора 1.46 - 1.86 Ггц, пропускная способность шины – 533 Мгц, кэш второго уровня 1 Мб), Allendale (65 нм, представлен в 2007 году, SSE3, частота процессора 1.6 - 2.4 Ггц, пропускная способность шины – 800 Мгц, кэш второго уровня 1 Мб), Wolfdale (45 нм представлен в 2008 году, частота процессора 2.8 - 2.93 Мб/с, пропускная способность шины – 1066 Мб/с, кэш второго уровня 2 Мб).
Celeron Dual Core является упрощенным и более дешевым (как правило за счет меньшей кэш памяти) вариантом PentiumDual Core, появился в 2006 году.
Intel Atom -32-битные процессоры, дешевые модели за счет уменьшенной кэш памяти 2го уровня, меньшей частотой системной шины, имеет модели: Silverthorne (45 нм, для ультрамобильных систем, представлен в 2008 году, поддерживает SSE, SSE2, SSE3, SSSE3, частота процессора 0.8 - 2.0 Ггц, пропускная способность шины – 400, 533 Мб/с, кэш второго уровня 0,5 Мб), Diamondville (45 нм, для нетбуков, представлен в 2008 году, поддерживает SSE, SSE2,SSE3, SSSE3, частота процессора 1.6 - 1.66 Ггц, пропускная способность шины – 533 - 667 Мб/с, кэш второго уровня 0,5 Мб).
Intel Core i3 имеет шину данных – DMI и следующие модели: Clarkdale (32 нм, 2 ядра, 4 потока, частота процессора 2.93 – 3.33 Ггц, кэш второго уровня 0,5 Мб, третьего – 4 Мб), Arrandale (32 нм, для ноутбуков, 2 ядра, 4 потока, частота процессора 1.2 – 2.53 Ггц, кэш второго уровня 0,5 Мб, третьего – 3 Мб).
Intel Core i5 появился в 2009, 10 годах, поддерживает SSE3, SSSE3, SSE4.1 и SSE4.2, имеет следующие модели: Lynnfield (45 нм, 4 ядра, частота процессора 2.4 – 2.8 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Clarkdale (32 нм, 2 ядра, частота процессора 3.2 – 3.6 Ггц, кэш второго уровня 0,5 Мб, третьего – 4 Мб), Arrandale (32, для ноутбуков, 2 ядра, частота процессора 1.06 – 2.67 Ггц, кэш второго уровня 0,5 Мб, третьего – 3 Мб).
Intel Core i7 поддерживает SSE3, SSSE3, SSE4.1 и SSE4.2, существуют следующие модели: Gulftown (32 нм, представлен в 2010 году, 6 ядер, 12 потоков, частота процессора 3.2 – 3.46 Ггц, 6×256 Кбайт L2-кэш (кэш второго уровня),12 Мбайт L3 (кэш третьего уровня), Bloomfield (45 нм, 4 ядра 8 потоков, представлен в 2008 году, частота процессора 2.66 – 3.33 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Lynnfield (45 нм, 4 ядра, представлен в 2009 году, частота процессора 2.53 – 3.06 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Arrandale (32 нм, 2 ядра, 4 потока, представлен в 2010 году, для ноутбуков, частота процессора 1.06 – 2.8 Ггц, кэш второго уровня 0,5 Мб, третьего – 4 Мб).
Intel Core i7 Extreme Edition имеет следующие модели: Bloomfield (45 нм, 4 ядра, 8 потоков, частота процессора 3.2 – 3.33 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Gulftown (45 нм, 6 ядер, 12 потоков, частота процессора 3.33 – 3.46 Ггц).
В последнее время выпускаются процессоры второго поколения(все по 32 нм, поддерживают набор SSE4.1, SSE4.2, илиAVG, или оба набора):
Intel Core i3 имеет шину данных – DMI и следующую модель: Sandy Bridge (32 нм, 2 ядра, 4 потока, частота процессора 2.5 – 3.4 Ггц, кэш третьего уровня – 3 Мб).
Intel Core i5 имеет шину данных – DMI и следующую модель: Sandy Bridge (32 нм, 2 ядра, 4 потока или 4 ядра, 4 потока, частота процессора 2.3 – 3.3 Ггц, кэш третьего уровня – 6 Мб).
Intel Core i7 имеет шину данных – DMI и следующую модель: Sandy Bridge (32 нм, 4 ядра, 8 потока, частота процессора 2.8 – 3.4 Ггц, кэш третьего уровня – 8 Мб).
Intel Core i7 Extreme Edition имеет следующие модели: Bloomfield (45 нм, 4 ядра, 8 потоков, частота процессора 3.2 – 3.33 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Gulftown (45 нм, 6 ядер, 12 потоков, частота процессора 3.33 – 3.46 Ггц).
Если процессор поддерживает технологию Turbo Boost, то можно разогнать процессор на большую частоту, о чем указывается в его характеристиках.
Если в списке не указана частота системной шины то, как правило, подразумевается использование не шины FSB, а шиныDMI. Она имеет частоту в 2 Ггц, за исключением серий Lynnfield и Bloomfield, имеющие шину QPI с частотой 4.8 или 6.4 Ггц (за каждый такт передается 16 бит, то есть, пропускная способность – 19.2 или 25.6 Гб).
Если нужно просмотреть более подробную информацию о процессорах, то следует перейти на страницу http://ru.wikipedia.org/wiki/Категория:Списки_микропроцессоров, на которой находится список разделов, как это показано ниже (или на сайте Intel - http://ark.intel.com/ru/, где можно выбрать русский язык).
Если у Вас находится процессор Intel, то узнать его возможности можно при помощи бесплатной программы со страницы http://www.intel.com/support/ru/processors/sb/cs-031726.htm. Выберем режим Процессор Intel® Diagnostic Tool (32-разрядная версия), нажав его и в появившемся окне щелкнем на надпись Загрузка, справа от надписи «Имя файла: IPDT Installer 32Bit 1.36.0.1-11-8.exe». На компьютер загрузится программа IPDT Installer 32Bit 1.36.0.1-11-8.exe, которую запустим для ее установки. Значок программы появится на рабочем столе, вид ее показан ниже (при установке может потребоваться согласиться с лицензионными условиями, но, если у Вас установлен процессор Intel, то вы уже заплатили за лицензию при покупке компьютера и можете соглашаться с условиями.
После запуска программы, на экране появится ее окно и начнется тестирование процессора, которое займет несколько минут.
После окончания тестирования на экране появится окно, вид которого показан ниже.
Теперь можно просмотреть результаты тестирования, либо выбрав режим File –Open Results File, либо в папе, откуда устанавливалась программа с именем TestResults.txt. Для выхода из программы нажмем на кнопку Close Test или ShutdownSystem. В файле будет представлен следующий текст:
…
--- Reading CPU Manufacturer --- (чтение производителя процессора)
AES - Advanced Encryption Standard Supported --> No ---> No Test Required
AVX - Advanced Vector Extensions Supported --> No ---> No Test Required
PCLMULQDQ - Polys Carry-Less Multiply Supported --> No ---> No Test Required
(как видно выше, ни один из трех наборов из AVX не поддерживается)
…
--- IMC NOT Supported on this Processor --- (Chipset Integrated Memory Controller или IMC – чипсет встроенного контроллера памяти не обнаружен)
--- Intel(R) 6 Series Chipset or Intel(R) C200 Series Chipset Not Detected --- (чипсет 6 серии или С200 не обнаружен)
…
.Intel(R) Integrated Graphics Device not supported on this processor.. (интегрированная видео система не обнаружена в процессоре)
..
Общие замечания. Что нужно иметь в виду, когда смотришь эти характеристики? Чем меньше технологический размер в нм (размер элементов процессора), тем меньшее требуется напряжение и меньше процессор разогревается. Чем больше частота системной шины и кэш второго и третьего уровня, тем быстрее работает компьютер. Чем больше новых технологий в компьютере, тем быстрее работает компьютер (в основном это касается моделей i3, i5, i7). Одной из характеристик работы процессора является тепловыделение, которое может быть от 10 до 165 Вт, чем меньше, тем лучше. Другой характеристикой является максимальная рабочая температура, которая может быть от 54 до 105 градусов по Цельсию.
Центральный процессор может поддерживать Virtualization Technology, при помощи которой на компьютере можно работать одновременно с несколькими операционными системами.
В 90х годах частота процессора постоянно увеличивалась. В 21 веке было обнаружено, что частоту процессора можно увеличивать лишь до определенного размера. Поэтому для того, чтобы ускорить работу процессора стали делать процессоры, которые могли бы параллельно выполнять действия. Сначала появились процессоры с одним ядром, но с возможностью выполнять вычисления в двух потоках, затем двух, трех, четырех и более ядерные процессоры. То есть, производительность стала повышаться в основном за счет количества ядер. Однако, не все программы могут работать одновременно с несколькими ядрами. Такая работа только начинается. Вместе с тем, если на компьютере выполняется несколько программ, то они могут выполняться на разных ядрах. Например, если установлена антивирусная программа, то она будет выполняться в одном ядре, а другая программа, например, текстовый редактор или браузер, в другом ядре. То есть, ускорение все равно будет, хотя может быть и не то, какое ожидалось.
Отметим, что многоядерный процессор, например, 4х ядерный может иметь не 4, а 8 потоков, по 2 на каждое ядро, что ускоряет процессор.
Существует две разновидности операционных систем: 32-битные и 64-битные. Если процессор 64-битный, то он может работать как с 32-битной, так и с 64-битной операционной системой. Однако для 64-битных систем требуется в два раза больше памяти, так как представление данных в два раза больше. Поэтому для нормальной работы нужно иметь не менее 3х гигабайт памяти, иначе преимущества не будут использованы. Поэтому большинство компьютеров используют 32-битную систему.
Компания AMD - основной конкурент компании Intel. Выпускает главным образом дешевые и производительные процессоры. Поскольку Slot 1 запатентован компанией Intel, компания AMD стала выпускать процессоры для разъема Socket 7. Поэтому для более производительной работы компания разработала разъем Super 7 и Slot A и далее начала выпускать свои собственные разъемы. Другие компании, производящие процессоры, стали ориентироваться на разработки компании AMD и использовать тот же набор команд 3DNow! и разъемы для установки процессоров.
Процессоры разных компаний имеют основной показатель – тактовая частота процессора, поэтому примерно сравнимы друг с другом при одной тактовой частоте, имея преимущества в одних возможностях и недостатки в других. При выборе процессора обращают внимание на его тактовую частоту, тактовую частоту системной шины и цену процессора вместе с материнской платой.
Другими компаниями, производящими процессоры, являются Cyrix, IBM, Texas Instruments. Как и компании AMD, они выпускают процессоры для Socket 7. Если у вас имеется процессор не компании Intel, то перед покупкой материнской платы удостоверьтесь, что она поддерживает имеющийся процессор, даже если там установлен нужный разъем. Кроме вышеперечисленных компаний, имеются и другие компании, производящие процессоры, но их доля на рынке процессоров невелика.
Первые процессоры серии 486 (Nx586, Am486) не слишком отличались друг от друга, однако в процессоре с тактовой частотой 133 Мгц (серия Am586) появился более мощный кэш 1-го уровня, встроенный в процессор, кроме того, улучшена конвейерная организация по расшифровке команд, то есть использовались те же принципы, что и в серии Pentium. Поэтому данный процессор стал довольно мощным и дешевым, по своей производительности равен примерно процессору Pentium-66. В 1995-97 годах выпускалась серия Am5к86, которая ознаменовала переход к серии, аналогичной Pentium, и имела тактовые частоты от 75 до 120 Мгц. Серия К5 имела улучшенные характеристики по сравнению с Pentium. У них была увеличена кэш-память для команд до 16 кб (8 у Pentium) и для данных – 80кб (8 у Pentium), имелось динамическое предсказание переходов, число конвейеров достигало четырех, были и другие улучшения. Процессор К5 имел такие же контакты, как и у Pentium (256 контактов), однако должен был обслуживаться материнской платой, о чем можно узнать в руководстве на него, и, кроме того, он был дешевле, чем Pentium.
Следующее поколение процессоров компании AMD имело наименование AMD К6 (с тактовой частотой от 166 до 300 Мгц). По производительности и по возможностям они эквивалентны серии Pentium. Содержат примерно 8,8 млн. транзисторов, кэш-память составляет 32 Кб и является наибольшей среди данного поколения процессоров. Одним из преимуществ является то, что этот процессор вставляется в разъем Socket 7, который используется для процессоров Pentium. Однако, чтобы можно было работать с этими материнскими платами, нужно, чтобы BIOS этих плат поддерживал указанный процессор. Компания AMD регулярно публикует списки продуктов сторонних изготовителей, платы которых поддерживают процессоры данной компании. Автор книги советует при покупке иметь в виду также процессоры этой компании, поскольку по многим параметрам они превосходят устройства других компаний. После появления возможностей с ММХ компания AMD тоже выпустила процессоры, работающими с такими инструкциями.
Потом появились в продаже процессоры компании AMD второго поколения К6-2 с возможностями использования новых инструкций 3DNow!, которые позволяют обрабатывать специальные команды и работают с трехмерными объектами. Тактовые частоты данного типа процессоров - 266, 300, 333, 350, 366, 380, 400, 450, 500 Мгц, содержит 9,3 млн. транзисторов, имеет кэш 64 Кб. Процессор также вставляется в разъем Socket 7, выпускается для работы с системными шинами 66, 95, 100 Мгц. Поколение К6-3 имеет тактовую частоту 400, 450 Мгц, работает с частотой системной шины 100 Мгц, вставляется в разъем Super 7, имеет встроенную кэш-память 64 Кб, на ядре 256 Кб, на материнской плате 512Кб – 2 Мгб, работает с командами ММХ, 3DNow! и поддерживает AGP.
Следующее поколение К7(Athlon) вышло в 1999 году с большой кэш-памятью 128 Кб в ядре и 512Кб – 8Мгб второго уровня и тактовыми частотами 500, 550, 600 Мгц, до 3,2 Гигагц и более для серии К7 (Duron), К7 (Thunderbird) и К7(Athlon).Duron обеспечивает тактовые частоты от 500 до 1 300 Мгц. Имеются процессоры Athlon XP с тактовыми частотами 1 700, 1 800, 1 900, 2 000, 2 200, 2 300, 2 400, 2 500, 2 600, 2 700, 2 800, 3 000, 3 100, 3 200 Мгц с кэш-памятью 256 Кб или 512 Кб. Компания Intel работает с системной шиной GTL, которая имеет тактовую частоту 66, 100, 133 Мгц. Шина EV6, разработанная компанией Digital Equipment, используется компанией AMD для процессоров серии К7 и возможна работа с тактовой частотой свыше 300 Мгц. В настоящее время используются частоты 100, 133, 200, 266, 333 Мгц., применяют Socket A, который внешне похож на Slot 1 или Slot A, но несовместим с ними, изготовлен по 0,18 мкм технологии. Данный процессор поддерживает набор команд 3DNow!, в него добавлены новые инструкции, в том числе SSE и он стал называться Enhanced (расширенный) 3DNow!. Процессоры Duron имеют тактовые частоты 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 Мгц, до 64 Кб кэш-памяти 2го уровня, произведены по 0,18 мкм технологии. Thunderbird имеет тактовые частоты от 750 Мгц до 1,33 Ггц, кэш-память первого уровня 128 Кб, второго – 64 Кб, ядро питания 1,6-1,7 в, работают с системной шиной 200 Мгц (100Мгцх2), устанавливаются в Slot A или Socket A. Процессоры Athlon имеют тактовые частоты от 600 Мгц до 3,0 Ггц и выше, кэш-память первого уровня 128 Кб, второго – 256 Кб, рассчитаны на частоту системной шины 200, 266 и 333 Мгц.
Затем компания AMD перешла к выпуску нового 64-разрядного процессора Athlon 64 с кэш-памятью первого уровня – 128 Кб, второго – 1 Мгб, имеющая частоты 2 800, 3 000, 3 200, 3 400, 3 500 Ггц. Данный вид процессоров имеет уже другой разъем для установки процессора. Такие устройства значительно превосходят производимые ранее 32-разрядные процессоры. Во-первых, теперь используются более длинные и оптимизированные инструкции, что сказалось на скорости обработки видео-данных, звуковых файлов и т.д. Во-вторых, такие процессоры могут адресовать до 1 Терабайта (1Терабайт равен 1 000 Гигабайт), тогда как 32-разрядные могут для этого использовать только 4 Гбайт памяти. В-третьих, новые процессоры имеют процессорный кэш емкостью 1 Мбайт, значительно более производительную системную шину HyperTransport с частотой до 1 600 Мгц, а в сам процессор встроен контроллер памяти, что весьма повышает общую производительность системы. В-четвертых, они имеют встроенную улучшенную антивирусную систему для защиты от части видов вирусов. Кроме того, данные процессоры могут работать с 64-разрядными программами-приложениями. Несмотря на то, что данных программ пока еще мало, но в будущем они будут все больше и больше распространены.
Данные по серии К7 можно представить в таблице ниже. Кэш третьего уровня отсутствует. Все серии (кроме Athlon, которая поддерживает MMX, 3DNow!), поддерживают инструкции MMX, 3DNow!, SSE. Размер кэша второго уровня (L2) дан в килобайтах.
Следующая серия К8 показана в таблице ниже. Размер кэша второго уровня (L2) дан в мегабайтах. Кэш третьего уровня отсутствует. Все серии обычно поддерживают MMX, 3DNow!, поддерживают инструкции MMX, 3DNow!, SSE, SSE2, SSE4а,AMD64, Cool’n’Quiet, NX-бит.
По идее, следующей должна быть версия К9, но появилась семейство К10. Здесь присутствует кэш третьего уровня. Все серии обычно поддерживают MMX, 3DNow!, поддерживают инструкции MMX, 3DNow!, SSE, SSE2, SSE4а, AMD64,Cool’n’Quiet, NX-бит, но появляется новые наборы – AMD-V и PowerNow!
Если в названии процессора имеются символы Х2, Х3, Х4, то цифры обозначают количество ядер. Так для названияPhenom X3 8600 символы Х3 обозначают наличие трех ядер.
Если нужно просмотреть характеристики конкретного процессора, то следует обратиться на страницу компании AMD по адресу - http://www.amd.com/ru/products/Pages/Products.aspx.
Шина FSB имеет частоты для процессоров Intel в 133, 166, 200, 266, 333, 400 Мгц. Если указана частота выше, например, 800, то это означает, что за один такт передается несколько данных и данный параметр (800 Мб/с = 100 Мгц х 8) должен называться теоретической пропускной способностью, то есть, какое количество данных передается по шине. Хотя в обиходной жизни часто применяется название «частота системной шины».
Частота системной шины для ранних процессоров AMD составляла такие же значения, как и компании Intel, но в современных процессорах (поколение К8 и К10) составляет 800, 1000, 1600, 1800, 2000 Мгц, соответственно теоретическая пропускная способность шины составляет от 6400 до 16 000 Мб/с в зависимости от коэффициента (сколько данных передается за один такт).
Дополнительные замечания. Желательно процессор устанавливать на материнскую плату с соответствующей процессору частотой системной шины. Все современные процессоры совместимы со всеми версиями Windows, а также Unix,OS/2 и др.
Продукция компании AMD пользуется популярностью благодаря низким ценам и высокой производительностью.
Одним из параметров, по которым можно судить о сложности процессоров, является количество транзисторов (в миллионах), которое указано ниже в таблице:
Другой параметр, по которым судят о возможностях процессора, является микрометровая технология CMOS. Раньше процессоры выполнялись по 3,0 технологии, далее 1,5; 0,8; 0,6; 0,35, 0,25, 0,18, 0,09 и т.д. Чем меньше значение, тем меньшего размера транзисторы и, соответственно, большее их число находится на квадратном миллиметре, тем меньшее энергообеспечение требуется для работы устройства, то есть меньше выделяется тепловой энергии. Кроме того, чем меньше размеры элементов процессора и расстояние между ними, тем более сокращается время прохождения сигнала, увеличивается производительность, поэтому ведущие компании переходят на новые технологии. Так, процессоры AMD Athlon XP с тактовыми частотами от 1500 до 2100 Мгц выпускались по 0.18 технологии, а с частотами 2 200 – 2 600 Мгц по 0.13 технологии. Происходит переход на 0.045 мкм технологию.
В последних моделях центральных процессоров реализован механизм защиты от перегрева, который заключается в том, что при повышении температуры выше критической он переходит на пониженную тактовую частоту, при которой потребляется меньше электроэнергии.
Современные персональные компьютеры используют, как правило, определенный алгоритм обработки данных, называемый архитектурой Фон Неймана, когда инструкции и сами данные хранятся в одном месте (памяти), а процесс обработки построен на циклической последовательной обработке данных. Именно последовательность обработки является узким местом такой архитектуры, так как любое данное должно последовательно пройти через процессор, хотя само вычисление может быть однотипным.
Из иных алгоритмов назовем Гарвардскую архитектуру, когда данные и программный код используют разную память. Однако в этом случае сложно использовать методы программирования, когда нужно поменять код в процессе выполнения программы, нельзя оперативно перераспределять память и т.д. Используется в встраиваемых компьютерах. Другой алгоритм, параллельный, применяется в многопроцессорных системах для ускорения процесса вычисления.
Процессоры персонального компьютера выпускаются в формате CISC (Complex Instruction Set Computer - компьютер со сложным набором инструкций), то есть каждая машинная инструкция выполняется непосредственно процессором. В отличие от данного вида процессоров, существует другой подход: процессоры RISC (Reduced Instruction Set Computer - компьютер с уменьшенным набором инструкций), которые имеют команды одной длины. Если на вход компьютера попадет команда из расширенного набора, то она выполняется несколькими инструкциями. Каждый из этих подходов имеет свои преимущества и недостатки. RISC процессоры работают быстрее, но когда встречается команда, которую нужно транслировать, она выполняется медленнее, однако сам процессор устроен проще, чем CISC. Кроме того, RISC процессоры выполняют за один такт несколько команд, а некоторые CISC процессоры требуют несколько тактов.
Поэтому разработчики пошли на выпуск новых процессоров, которые имеют и RISC, и CISC подходы. В будущем будут разработаны процессоры с VLСW обработкой (Very Long Computer Word - очень длинное машинное слово), в которых несколько инструкций помещаются в одну запись и подаются на вход процессора, обрабатывающий несколько команд одновременно, будут реализованы и другие подходы.
Процессор, помимо внутренней работы, имеет внешние каналы (шины), через которые он получает (посылает) данные. В самом процессоре имеется устройство интерфейса шины, которое ответственно за прием/передачу данных, в частности, усиливающее выходной сигнал для того, чтобы сигнал дошел до пункта назначения, при этом усиливая и входные сигналы, чтобы их можно было распознать на другом конце шины. Кроме того, у него имеется много дополнительных функций, таких, как согласование сигнала и пр.
Другие компании, производящие процессоры: Cyrix, IBM, NexGen, Texas Instruments, Centaur Technology.