Допустим, у нас есть бесконечно малые при одном и том же величины α(x) и β(x) (либо, что не важно для определения, бесконечно малые последовательности).
Если , то β — бесконечно малая высшего порядка малости, чем α. Обозначают β = o(α).
Если , то β — бесконечно малая низшего порядка малости, чем α. Соответственно α = o(β).
Если (предел конечен и не равен 0), то α и β являются бесконечно малыми величинами одного порядка малости.
Это обозначается как β = O(α) или α = O(β) (в силу симметричности данного отношения).
Если (предел конечен и не равен 0), то бесконечно малая величина β имеет m-й порядок малости относительно бесконечно малой α.
Для вычисления подобных пределов удобно использовать правило Лопиталя.