русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Показательная форма комплексного числа


Дата добавления: 2015-01-16; просмотров: 1167; Нарушение авторских прав


Показательная и тригонометрические функции в области комплексных чисел связаны между собой формулой которая носит название формулы Эйлера. Обосновать ее можно с помощью теории степенных рядов. Эта теория будет изложена в курсе математического анализа.Пусть комплексное число в тригонометрической форме имеет вид . На основании формулы Эйлера выражение в скобках можно заменить на показательное выражение. В результате получимта запись называется показательной формой комплексного числа. Так же, как и в тригонометрической форме, здесь ,

 

41.Метод интегрирования по частям позволяет свести исходный неопределенный интеграл к

простому виду либо к табличному интегралу. Этот метод наиболее часто применяется, если подынтегральная функция содержит логарифмические, показательные, обратные тригонометрические, тригонометрические функции, а также их комбинации.

Формула интегрирования по частям следующая .

 

 

42.

 

43. Определенным интегралом от функции на называется предел интегральной суммы, построенной для функции на при неограниченном увеличении числа разбиений отрезка на части и при стягивание каждого участка разбиения в точку, если этот предел существует и не зависит ни от способа разбиения отрезка на части, ни от выбора точки на каждой из этих частей.

Геометрический смысл: Определенный интеграл от неотрицательной функции численно равен площади криволинейной трапеции

 

44.

 

 

45. Для определенного интеграла справедлива формула интегрирования по частям:

 

 

46.

для отрицательной области.

 

47. Пусть требуется вычислить определенный интеграл от непрерывной функции. Если может быть найдена первообразная подынтегральной функции, то по формуле Ньютона — Лейбница



Если же первообразная не может быть найдена или если функция задана графически или таблично, то для вычисления интеграла прибегают к приближенным формулам, точность которых может быть сделана сколь угодно большой.

Приближенные методы вычисления определенного интеграла в большинстве случаев основаны на том, что определенный интеграл численно равен площади криволинейной трапеции, ограниченной кривой сегментом оси и вертикальными прямыми проведенными через точки. Благодаря этому задача о приближенном вычислении интеграла равносильна задаче о приближенном вычислении площади криволинейной трапеции.

Идея приближенного вычисления интеграла заключается в том, что кривая заменяется новой, достаточно «близкой» к ней кривой.

Тогда искомая площадь приближенно равна площади криволинейной трапеции, ограниченной новой кривой.

В качестве этой новой ограничивающей кривой выбирают такую, для которой площадь криволинейной трапеции подсчитывается просто. В зависимости от выбора новой кривой мы получим ту или иную приближенную формулу интегрирования.

 

 

48. Дифференциальное уравнение (ДУ) – это уравнение, в которое входит неизвестная функция под знаком производной или дифференциала.

 

Если неизвестная функция является функцией одной переменной, то дифференциальное уравнение называют обыкновенным (сокращенно ОДУ – обыкновенное дифференциальное уравнение). Если же неизвестная функция есть функция многих переменных, то дифференциальное уравнение называют уравнением в частных производных.

 

Максимальный порядок производной неизвестной функции, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения.

Вот примеры ОДУ первого, второго порядка соответственно:

 

 

49.

Дифференциальное уравнение первого порядка называются неполными, если в нем не содержится (явно) или сама функция у, или независимая переменная х.

В том случае, когда правая часть дифференциального уравнения не содержит самой функции у, оно принимает вид:

или , или .

 

 

50. Дифференциальные уравнения с разделяющимися переменными вида или .

Дифференциальные уравнения называют уравнениями с разделенными переменными.

Название этого вида дифференциальных уравнений достаточно показательно: выражения, содержащие переменные x и y, разделены знаком равенства, то есть, находятся по разные стороны от него.

Общее решение дифференциальных уравнений с разделенными переменными можно найти, проинтегрировав обе части равенства: ∫ f(y)dy = ∫ f(x)dx.

 

 



<== предыдущая лекция | следующая лекция ==>
Тригонометрическая форма комплексного числа | Галиматья


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.