Если определенная на интервале (a;b) функция f(x) имеет на нем хотя бы одну первообразную F(x), то она имеет на этом интервале бесконечное множество первообразных, элементами которого являются функции F(x)+С,
и только они.
Пример.
Каждая из функций
, где С – произвольное действительное число, является первообразной для функции
на R.
Из теоремы очевидно, что при любом действительном С график функции F(x)+С получается из графика функции F(x) путем параллельного переноса последнего на величину С вдоль оси ординат.
Таким образом, теорема утверждает, что вся совокупность графиков первообразных функции f(x) получается из одного из них путем всевозможных параллельных переносов этого графика вдоль оси ординат.