русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Метод выделения полного квадрата


Дата добавления: 2015-09-15; просмотров: 3121; Нарушение авторских прав


Интегралы вида , (коэффициенты и не равны нулю) решаются методом выделения полного квадрата, который уже фигурировал на уроке Геометрические преобразования графиков.

На самом деле такие интегралы сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это с помощью знакомых формул сокращенного умножения:

или

Формулы применяются именно в таком направлении, то есть, идея метода состоит в том, чтобы в знаменателе искусственно организовать выражения либо , а затем преобразовать их соответственно в либо .

Пример 9

Найти неопределенный интеграл

Это простейший пример, в котором при слагаемом – единичный коэффициент (а не какое-нибудь число или минус).

Смотрим на знаменатель, здесь всё дело явно сведется к случаю . Начинаем преобразование знаменателя:

Очевидно, что нужно прибавлять 4. И, чтобы выражение не изменилось – эту же четверку и вычитать:

Теперь можно применить формулу :

После того, как преобразование закончено ВСЕГДА желательно выполнить обратный ход: , всё нормально, ошибок нет.

Чистовое оформление рассматриваемого примера должно выглядеть примерно так:

Готово. Подведением «халявной» сложной функции под знак дифференциала: , в принципе, можно было пренебречь

Пример 10

Найти неопределенный интеграл:

Это пример для самостоятельного решения, ответ в конце урока

Пример 11

Найти неопределенный интеграл:

Что делать, когда перед находится минус? В этом случае, нужно вынести минус за скобки и расположить слагаемые в нужном нам порядке: . Константу («двойку» в данном случае) не трогаем!

Теперь в скобках прибавляем единичку. Анализируя выражение, приходим к выводу, что и за скобкой нужно единичку – прибавить:

Тут получилась формула , применяем:

ВСЕГДА выполняем на черновике проверку:
, что и требовалось проверить.



Чистовое оформление примера выглядит примерно так:

Усложняем задачу

Пример 12

Найти неопределенный интеграл:

Здесь при слагаемом уже не единичный коэффициент, а «пятёрка».

(1) Если при находится константа, то её сразу выносим за скобки.

(2) И вообще эту константу всегда лучше вынести за пределы интеграла, чтобы она не мешалась под ногами.

(3) Очевидно, что всё сведется к формуле . Надо разобраться в слагаемом , а именно, получить «двойку»

(4) Ага, . Значит, к выражению прибавляем , и эту же дробь вычитаем.

(5) Теперь выделяем полный квадрат. В общем случае также надо вычислить , но здесь у нас вырисовывается формула длинного логарифма , и действие выполнять не имеет смысла, почему – станет ясно чуть ниже.

(6) Собственно, можно применить формулу , только вместо «икс» у нас , что не отменяет справедливость табличного интеграла. Строго говоря, пропущен один шаг – перед интегрированием функцию следовало подвести под знак дифференциала: , но, как я уже неоднократно отмечал, этим часто пренебрегают.

(7) В ответе под корнем желательно раскрыть все скобки обратно:

Сложно? Это еще не самое сложное в интегральном исчислении. Хотя, рассматриваемые примеры не столько сложны, сколько требуют хорошей техники вычислений.

Пример 13

Найти неопределенный интеграл:

Это пример для самостоятельного решения. Ответ в конце урока.

Существуют интегралы с корнями в знаменателе, которые с помощью замены сводятся к интегралам рассмотренного типа, о них можно прочитать в статье Сложные интегралы, но она рассчитана на весьма подготовленных студентов.

 



<== предыдущая лекция | следующая лекция ==>
Метод подведения под знак дифференциала для простейших дробей | Подведение числителя под знак дифференциала


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.