русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Основные понятия


Дата добавления: 2015-09-15; просмотров: 1488; Нарушение авторских прав


Краткие теоретические сведения

Метод преобразований Лапласа

Основные понятия

 

Преобразование Лапласа — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинала). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.

Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями.

Преобразованием Лапласа функции действительной переменной , называется функция комплексной переменной , такая что:

 

 

Правая часть этого выражения называется интегралом Лапласа.

Обратным преобразованием Лапласа функции комплексного переменного , называется функция действительного переменного, такая что:

 

 

где — некоторое вещественное число. Правая часть этого выражения называется интегралом Бромвича.

 

1.1.2 Свойства преобразований Лапласа

 

· Абсолютная сходимость

Если интеграл Лапласа абсолютно сходится при σ = σ0, то есть существует предел

 

 

то он сходится абсолютно и равномерно для и F(s) — аналитическая функция при ( — действительная часть комплексной переменной s). Точная нижняя грань σa множества чисел σ, при которых это условие выполняется, называется абсциссой абсолютной сходимости преобразования Лапласа для функции f(x).

· Условия существования прямого преобразования Лапласа

Преобразование Лапласа существует в смысле абсолютной сходимости в следующих случаях:

1. Случай : преобразование Лапласа существует, если существует интеграл



 

 

2. Случай σ > σa: преобразование Лапласа существует, если интеграл

 

существует для каждого конечного

 

x1 > 0 и для

 

3. Случай σ > 0 или σ > σa (какая из границ больше): преобразование Лапласа существует, если существует преобразование Лапласа для функции f'(x) (производная к f(x)) для σ > σa.

Примечание: это достаточные условия существования.

· Условия существования обратного преобразования Лапласа

Для существования обратного преобразования Лапласа достаточно выполнение следующих условий:

1. Если изображение F(s) — аналитичная функция для и имеет порядок меньше −1, то обратное преобразование для неё существует и непрерывно для всех значений аргумента, причём

 

для

 

2. Пусть

 

,

 

так что

 

аналитична относительно каждого zk и равна нулю для

 

, и

 

тогда обратное преобразование существует и соответствующее прямое преобразование имеет абсциссу абсолютной сходимости.

Примечание: это достаточные условия существования.

· Теорема о свёртке

Преобразованием Лапласа свёртки двух оригиналов является произведение изображений этих оригиналов.

 

 

· Умножение изображений

 

 

Левая часть этого выражения называется интегралом Дюамеля, играющим важную роль в теории динамических систем.

· Дифференцирование и интегрирование оригинала

Изображением по Лапласу первой производной от оригинала по аргументу является произведение изображения на аргумент последнего за вычетом оригинала в нуле справа.

 

 

В более общем случае (производная n-го порядка):

 

 

Изображением по Лапласу интеграла от оригинала по аргументу является изображение оригинала деленное на свой аргумент.

 


 

· Дифференцирование и интегрирование изображения. Обратное преобразование Лапласа от производной изображения по аргументу есть произведение оригинала на свой аргумент, взятое с обратным знаком.

 

 

Обратное преобразование Лапласа от интеграла изображения по аргументу есть оригинал этого изображения, деленный на свой аргумент.

 

 

· Запаздывание оригиналов и изображений. Предельные теоремы

Запаздывание изображения:

 

 

Запаздывание оригинала:

 

 

Примечание: u(x) — Функция Хэвисайда.

Теоремы о начальном и конечном значении (предельные теоремы):

 

Все полюсы в левой полуплоскости. Теорема о конечном значении очень полезна, так как описывает поведение оригинала на бесконечности с помощью простого соотношения. Это, к примеру, используется для анализа устойчивости траектории динамической системы.

 

 

· Другие свойства

 

Линейность

 

 

Умножение на число

 

 

 

1.2 Временные характеристики

 

Временные характеристики представляют собой зависимость выходного сигнала системы от времени при подаче на ее вход некоторого типового воздействия. В ТАУ используются два вида временных характеристик:

-переходная характеристика (переходная функция);

-импульсная переходная характеристика (функция веса).

Переходная функция , иногда называют переходной процесс — в теории управления реакциядинамической системы на входное воздействие в виде функции Хевисайда, при заданных начальных условиях. В электронике переходную функцию часто определяют как изменение выходных сигналов системы как реакцию на изменение входного сигнала от нуля до единицы за достаточно короткий промежуток времени. С практической точки зрения знание того, как система реагирует на быстрое изменение входного сигнала, является важным, поскольку скачок во входном сигнале может оказать серьёзное влияние на поведение всей системы или каких-то её компонент. Помимо этого, по виду переходной функции можно судить об устойчивости системы, времени переходного процесса, величине перерегулирования, статической ошибке и других динамических характеристиках системы.

Зная переходную характеристику, можно определить реакцию линейной системы (или линеаризованной) на произвольное входное воздействие с помощью интеграла Дюамеля:

,

где символически обозначено: — свёртка двух функций, — производная воздействия по времени.

Импульсная переходная функция (весовая функция, импульсная характеристика) — выходной сигнал динамической системы как реакция на входной сигнал в виде дельта-функции Дирака. В цифровых системах входной сигнал представляет собой простой импульс минимальной ширины (равной периоду дискретизации для дискретных систем) и максимальной амплитуды.

 

 



<== предыдущая лекция | следующая лекция ==>
Понятие и основные характеристики массовой коммуникации. Эффективность массовой коммуникации. | Программа №1


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.