Двоичная (бинарная) система счисления имеет основание 2. Ее алфавит – цифры 0 и 1. Для перевода числа из двоичной системы счисления в десятичную также справедливо правило . Представим в десятичном виде число 1101(2), или, что то же самое, &1101 (& - амперсант, - этим символом принято указывать то, что следующая за ним запись двоичная).
Но двоичная система имеет некоторые приятные особенности, т.к. коэффициентами при степенях двойки в ней могут быть только либо нули (и тогда можно просто игнорировать разряд числа, имеющий значение “0”), либо единицы (умножение на “1” также можно опустить).
Т.е. достаточно просуммировать “два в соответствующей степени” только в тех позициях двоичного числа, в которых находятся единицы. Степень же, в которую нужно возводить число 2, равна номеру позиции.
Арифметические операции в любой позиционной системе счисления также имеют общую логику.
Таблица 4
“Круглые” числа в двоичной СС
&101
= 5(10)
&1
= 20
= 1
+ 1
&10
= 21
= 2
&110
= 6(10)
&100
= 22
= 4
+ 1
&1000
= 23
= 8
&111
= 7(10)
&10000
= 24
= 16
Каждый разряд двоичного числа имеет информационную емкость 1 бит. На основании одного двоичного разряда можно закодировать только два десятичных числа - &0=0(10), &1=1(10), на основании двух двоичных разрядов можно закодировать уже четыре десятичных числа – &00=0(10), &01=1(10) , &10=2(10), &11=3(10) , тремя двоичными разрядами можно представить восемь десятичных чисел и т.д. в соответствии с формулой Хартли.
Таблица 5
20
десятичное
22
21
20
десятичное
21
20
десятичное
Мы видим, что добавление каждого следующего разряда вдвое увеличивает количество двоичных комбинаций. Графически это может быть представлено так:
Рисунок 7. Каждый следующий разряд двоичного числа удваивает количество возможных комбинаций из нулей и единиц
Таблицу степеней числа 2 от 20 до 210 следует знать наизусть.
Таблица 6
N
2N
Открытие двоичного способа представления чисел приписывают китайскому императору Фо Ги, жизнь которого относится к 4-му тысячелетию до новой эры. Известный немецкий математик Лейбниц (1646-1716) в 1697 г. разработал правила двоичной арифметики. Он подчеркивал, что "вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот, является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок".
Блестящие предсказания Лейбница сбылись только через 2,5 столетия, когда именно двоичная система счисления нашла применение в качестве универсального способа кодирования информации в компьютерах.
Перевод целых чисел из десятичной системы счисления в систему счисления с другим основанием
Для осуществления такого перевода необходимо делить число с остатком на основание системы счисления до тех пор, пока частное больше основания системы счисления.
Рисунок 8. Перевод числа из десятичной СС в двоичную
Пример перевода десятичного числа 25(10) в двоичный вид показан на рисунке 16.
Результат перевода записывается в обратном порядке, т.е. начиная с последнего результата деления.