русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Двоичная система счисления


Дата добавления: 2013-12-23; просмотров: 1814; Нарушение авторских прав


Двоичная (бинарная) система счисления имеет основание 2. Ее алфавит – цифры 0 и 1. Для перевода числа из двоичной системы счисления в десятичную также справедливо правило . Представим в десятичном виде число 1101(2), или, что то же самое, &1101 (& - амперсант, - этим символом принято указывать то, что следующая за ним запись двоичная).

1101(2)=1*23+1*22+0*21+1*20=1*8+1*4+0*2+1*1=13(10)

Но двоичная система имеет некоторые приятные особенности, т.к. коэффициентами при степенях двойки в ней могут быть только либо нули (и тогда можно просто игнорировать разряд числа, имеющий значение “0”), либо единицы (умножение на “1” также можно опустить).

Т.е. достаточно просуммировать “два в соответствующей степени” только в тех позициях двоичного числа, в которых находятся единицы. Степень же, в которую нужно возводить число 2, равна номеру позиции.

Арифметические операции в любой позиционной системе счисления также имеют общую логику.

 

Таблица 4

  “Круглые” числа в двоичной СС
&101 = 5(10) &1 = 20 = 1
+ 1   &10 = 21 = 2
&110 = 6(10) &100 = 22 = 4
+ 1   &1000 = 23 = 8
&111 = 7(10) &10000 = 24 = 16

 

Каждый разряд двоичного числа имеет информационную емкость 1 бит. На основании одного двоичного разряда можно закодировать только два десятичных числа - &0=0(10), &1=1(10), на основании двух двоичных разрядов можно закодировать уже четыре десятичных числа – &00=0(10), &01=1(10) , &10=2(10), &11=3(10) , тремя двоичными разрядами можно представить восемь десятичных чисел и т.д. в соответствии с формулой Хартли.

 

Таблица 5

  20 десятичное   22 21 20 десятичное
   
   
       
21 20 десятичное  
 
 
 
 

 



Мы видим, что добавление каждого следующего разряда вдвое увеличивает количество двоичных комбинаций. Графически это может быть представлено так:

 

Рисунок 7. Каждый следующий разряд двоичного числа удваивает количество возможных комбинаций из нулей и единиц

 

Таблицу степеней числа 2 от 20 до 210 следует знать наизусть.

Таблица 6

N
2N

 

Открытие двоичного способа представления чисел приписывают китайскому императору Фо Ги, жизнь которого относится к 4-му тысячелетию до новой эры. Известный немецкий математик Лейбниц (1646-1716) в 1697 г. разработал правила двоичной арифметики. Он подчеркивал, что "вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот, является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок".

Блестящие предсказания Лейбница сбылись только через 2,5 столетия, когда именно двоичная система счисления нашла применение в качестве универсального способа кодирования информации в компьютерах.

Перевод целых чисел из десятичной системы счисления в систему счисления с другим основанием

Для осуществления такого перевода необходимо делить число с остатком на основание системы счисления до тех пор, пока частное больше основания системы счисления.

Рисунок 8. Перевод числа из десятичной СС в двоичную

Пример перевода десятичного числа 25(10) в двоичный вид показан на рисунке 16.

Результат перевода записывается в обратном порядке, т.е. начиная с последнего результата деления.

 



<== предыдущая лекция | следующая лекция ==>
Кодирование чисел. Системы счисления | Кодирование двоичным кодом


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.