русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Макроскопический подход. Метод балансных уравнений


Дата добавления: 2013-12-23; просмотров: 1198; Нарушение авторских прав


В предыдущем разделе были изложены основы микроскопической теории, которая позволяет объяснить процессы передачи возбуждений между оптическими центрами. Следующий шаг должен состоять в количественном описании экспериментальных данных. Наиболее последовательной является теория, которая базируется на описанной выше микроскопической модели и связывает параметры этой модели, такие, как радиус Фёрстера, с макроскопическими параметрами, измеряемыми экспериментально – квантовым выходом и временем затухания люминесценции. Однако такая теория к настоящему времени разработана только для наиболее простых случаев, хотя многочисленные серьёзные исследования в этом направлении ведутся постоянно и уже продолжительное время.

Существует другой подход, позволяющий количественно описать результаты экспериментов по передаче возбуждений. Этот подход основан на использовании системы «балансных уравнений».

При таком подходе задача сводится к рассмотрению системы энергетических уровней и вероятностей всевозможных переходов между ними. Составляется система дифференциальных уравнений первого порядка для населённостей уровней. Число уравнений равно числу рассматриваемых уровней. Учитываются как излучательные, так и безызлучательные переходы, а также переходы с поглощением света. В случае, когда метод применяется для анализа работы квантовых усилителей и генераторов, учитываются вынужденные излучательные переходы. Скорости переходов между уровнями фигурируют в качестве параметров.

Уравнения составляются на основе следующего принципа: скорость изменения населённости конкретного уровня равна сумме скоростей всех переходов, при которых уровень заселяется и при которых он расселяется. Часто скорости переходов, заселяющих уровень, называют «приходными членами», а скорости переходов, расселяющих уровень,– «расходными членами». В стационарном случае населённость уровней не изменяется. Сумма приходных членов равна сумме расходных. Иными словами, осуществляется «баланс скоростей».



Метод балансных уравнений широко применяется для количественного анализа как результатов исследований люминесценции, так и работы лазеров. Далее он будет неоднократно применяться и в этом курсе. В настоящем разделе рассмотрен простейший случай использования метода, который позволяет проиллюстрировать серьёзные проблемы, возникающие при его применении.

Статическое тушение люминесценции. Формула Фёрстера.

Рассмотрим задачу о затухании люминесценции, после прекращения действия возбуждающего импульса. Будем считать, что люминесценция излучается с одного метастабильного уровня «2». Изменение со временем населённости этого уровня описывается простейшим балансным уравнением:

(3.11)

Здесь – коэффициент Эйнштейна, описывающий вероятность спонтанного излучательного распада (люминесценцию). Решение уравнения просто находится и имеет вид затухающей экспоненты:

 

(3.12)

 

Это хорошо известный результат: люминесценция ансамбля одинаковых невзаимодействующих оптических центров после прекращения возбуждающего импульса затухает по экспоненциальному закону, что полностью соответствует эксперименту. Время затухания люминесценции обозначено , где индекс указывает на исключительно радиационную причину затухания.

Теперь будем считать, что люминесцирующие центры являются донорами, так как имеются акцепторы, на которые возбуждения могут передаваться. Запишем в балансном уравнении скорость этой передачи в таком же виде, как записывается скорость излучательного распада. Будем считать, что она пропорциональна населённости , а коэффициент пропорциональности назовём вероятностью передачи. Отметим, что эта вероятность характеризует весь ансамбль центров, в отличие от вероятности , которая фигурировала в разделе (3.2) при рассмотрении микроскопической модели и относилась к паре оптических центров. Балансное уравнение с учетом передачи на донор запишется в виде:

(3.13)

Оно имеет решение такого же вида, как уравнение (3.12).

(3.14)

 

Согласно этому решению люминесценция доноров затухает по-прежнему по экспоненциальному закону, только скорость затухания увеличилась. Измерив время затухания без акцептора и в присутствии акцептора, можно определить из эксперимента вероятность передачи.

(3.15)

 

Описанная схема анализа экспериментальных данных проста и удобна. Однако она является весьма приближённой. Как теория, так и экспериментальные данные говорят о том, что затухание люминесценции донора в присутствии акцептора не является экспоненциальным. В чём физическая причина этой неэкспоненциальности?

Дело в том, что для пары оптических центров «донор-акцептор» вероятность передачи очень сильно зависит от расстояния между центрами (3.10). Расстояния между донорами и акцепторами как в кристалле, так и в стекле могут сильно варьировать. Таким образом, затухание люминесценции каждого центра экспоненционально, но параметры экспоненты для разных центров различны. В эксперименте мы имеем дело с ансамблем центров, затухание люминесценции которого описывается суммой экспонент с разными показателями, а такая сумма не описывается одной экспонентой.

Строгий теоретический анализ формы кривой затухания в этом случае был сделан Фёрстером. Полученное им соотношение имеет следующий вид:

(3.16)

 

где: , скорость излучательного распада, – вероятность передачи для пары центров, расположенных на среднем расстоянии между донором и акцептором, – гамма функция.

Если приравнять выражения (3.14) и (3.16), то получается, что для правильного описания затухания люминесценции с помощью балансного уравнения необходимо, чтобы вероятность в балансном уравнении была не постоянным параметром, а функцией времени:

(3.17)

 

Итак, согласно строгой теории вероятность передачи в балансном уравнении зависит от времени.



<== предыдущая лекция | следующая лекция ==>
Микроскопическая модель передачи возбуждений для пары центров | Спектральная миграция. Моделирование на основе балансных уравнений.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.