русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Процессы безызлучательной передачи возбуждений между оптическими центрами и их экспериментальные проявления


Дата добавления: 2013-12-23; просмотров: 1171; Нарушение авторских прав


Глава 3 Статистическое моделирование трансформации возбуждений в материалах фотоники

Настоящая глава посвящена моделированию процессов, происходящих в возбуждённых состояниях оптических центров, образованных редкоземельными ионами в стёклах. Их структурные модели обсуждались в главе 2. Размеры центра ограничены первой координационной сферой иона РЗЭ. Эти центры являются типичным случаем локальных оптических центров. Основная часть материала настоящей главы может быть распространена на локальные оптические центры любого типа.

В случае если концентрация рекоземельных центров невелика, они не взаимодействуют друг с другом. Процессы поглощения и излучения происходят в каждом центре независимо от других центров. Таких процессов – три типа. Это поглощение света, испускание света и безызлучательные переходы, при которых энергия возбуждённого рекоземельного иона разменивается на несколько колебательных квантов матрицы.

При поглощении света оптический центр переходит из основного состояния «1» в возбуждённое состояние «i». Вероятность такого процесса пропорциональна населённости основного состояния и спектральной плотности поглощаемого излучения .

(3.1)

Коэффициент пропорциональности называется коэффициентом Эйнштейна для поглощения.

При спонтанном излучении света оптический центр переходит из состояния “i” в состояние с меньшей энергией “k”. Вероятность этого процесса пропорциональна населённости начального уровня . Коэффициент пропорциональности называется коэффициентом Эйнштейна для спонтанного излучения.

Вероятность безызлучательного перехода между состояниями “i” и “k” существенно зависит от энергетического зазора между уровнями . Причина этого состоит в том, что вероятность зависит от числа рождающихся при безызлучательном переходе колебательных квантов. Чем больше рождается колебательных квантов, тем меньше вероятность такого процесса. Но энергия колебательного кванта в твёрдом теле ограничена предельным значением . Если величина зазора больше , то требуется, чтобы при безызлучательном переходе появилось несколько колебательных квантов и вероятность такого процесса гораздо меньше, чем вероятность процесса, при котором образуется один квант.



Когда после поглощения света оптический центр переходит в состоянии “i” с большой энергией, путь дальнейшей трансформация этой энергии зависит от соотношения между вероятностями излучательных и безызлучательных переходов из состояния “i”. В случае редкоземельных центров после поглощения возбуждающего света центр обычно попадает в состояние, для которого наиболее вероятным является безызлучательный переход на более низколежащий уровень. Такие безызлучательные переходы будут происходить до тех пор, пока оптический центр не окажется в состоянии, из которого вероятность безызлучательного перехода меньше вероятности излучательных переходов. Это состояние называется «метастабильным», а соответствующий уровень – «метастабильным уровнем».

В случае малой концентрации оптических центров существует только два способа дезактивации возбуждённых состояний: излучение света и трансформация возбуждения центра в колебания матрицы. Ситуация меняется при увеличении концентрации центров. В этом случае проявляется взаимодействие центров друг с другом. В результате взаимодействия пары центров, один из которых находится на метастабильном уровне, возбуждение может перейти на второй центр. Такой процесс называется «передачей возбуждения». Центр, от которого возбуждение уходит, называется "донором", а тот на который возбуждение попадает – "акцептором".

Этот процесс можно записать в виде следующей реакции:

D* + A = D + A* (3.2)

где буквы D и A означают донор и акцептор, а звёздочка указывает на то, что центр находится в возбуждённо состоянии.

Рисунок 3.1 изображает процесс передачи возбуждений на схеме энергетических уровней в случае, когда донор и акцептор являются центрами разного типа (например, разными редкоземельными ионами). Переходы, изображённые сплошными линиями, соответствуют поглощению и излучению света. Волнистые линии изображают внутрицентровые безызлучательные переходы, при которых энергия центра трансформируется в колебания матрицы. Пунктирные линии изображают безызлучательные переходы, при которых происходит передача возбуждения с донора на акцептор. В доноре и в акцепторе пунктирные линии имеют одинаковую длину, что является выражением закона сохранения энергии при передаче. Описанный способ изображения переходов разного типа используется далее всюду в этой главе.

Изображённый на рисунке процесс весьма существенно влияет на параметры люминесценции как донора, так и акцептора.

Во-первых, передача уменьшает квантовый выход и время затухания люминесценции донора. Часть возбуждений донора уходит на акцептор вместо того, чтобы трансформироваться в излучение, которому на рисунке соответствует сплошная стрелка, изображающая излучательный переход в доноре. Говорят, что акцептор «тушит» люминесценцию донора, а сам акцептор называют «тушителем».

 

 
Рис 3.1 Схема передачи энергии между локальными центрами

 

Во-вторых, в случае, если в доноре возбуждение попадает на метастабильный уровень, как это изображено на рисунке, передача возбуждений вызывает люминесценцию акцептора, изображённую на рисунке сплошной стрелкой на схеме уровней акцептора. Необходимо подчеркнуть, что акцептор начинает люминесцировать несмотря на то, что непосредственно светом он не возбуждается. Это явление называют «сенсибилизацией» люминесценции акцептора, а донор называют «сенсибилизатором».

Часто оказывается, что у акцептора нет метастабильного уровня, и он не люминесцирует. Такая ситуация имеет место, когда акцептор имеет много энергетических уровней, зазоры между которыми меньше максимальной энергии колебательного кванта. Тогда возбуждение оптического центра «скатывается» по этим уровням, как по лестнице, размениваясь на колебательные кванты. Важным примером такого акцептора являются O-H группа. В этом случае возбуждение разменивается не на колебания матрицы, а на колебания самой O–H группы.

Ап-конверсия.

Очень важен частный случай передачи возбуждений, когда два, расположенных на достаточно близком расстоянии центра, оказываются оба возбуждены на метастабильный уровень. В этом случае возможен процесс передачи возбуждений, в результате которого один центр переходит в основное состояние, а второй – в возбуждённое состоянии с энергией равной сумме энергий обоих центров до передачи (рис. 3.2) Этот процесс называется «ап-конверсией».

Дальнейшая судьба образовавшегося возбуждения с большой энергией зависит от соотношения значений вероятностей излучательных и безызлучательных переходов с уровня, который оказался возбуждённым. В зависимости от этого соотношения ап-конверсия выступает или как дополнительный канал тушения, или как способ накачки уровней с высокой энергией. Первый из этих случаев моделируется в разделе 3.6.

 

Рис 3.2 Ап-конверсионное тушение люминесценции ионов Er3+ и влияние на него миграции возбуждений

 

Миграция возбуждений

Термин «миграция возбуждений», или просто «миграция» употребляют в случае, если передача происходит между центрами одного типа и только один из пары центров находится исходно на метастабильном уровне, а второй центр находится в основном состоянии.

На первый взгляд, кажется, что миграция не должна как-либо влиять на параметры люминесценции. Действительно, был возбуждён один центр, стал возбуждён другой, соседний, точно с такими же свойствами. Оказывается, что это не так. Влияния миграции на люминесцентные параметры материалов разнообразны и очень важны. Их обязательно надо учитывать при разработке новых материалов фотоники. Дело в том, что миграция модифицирует все рассмотренные выше проявления передачи возбуждений.

Миграция по донорам доставляет возбуждения к донорам, которые расположены на близком расстоянии от акцепторов. Благодаря этому увеличивается эффективность процессов передачи, в которых участвуют акцепторы.

Например, давно известно явление под названием «концентрационное тушение люминесценции». Оно состоит в том, что практически для всех материалов квантовый выход и время затухания люминесценции уменьшаются с увеличение концентрации люминесцирующих центров. При этом в образцах с разной концентрацией центров, излучающих люминесценцию (доноров), концентрация тушителей (акцепторов) одна и та же. Этот эффект не могли объяснить до тех пор, пока не учли влияние миграции по донорам, которая доставляет возбуждения к тушителям.

Точно такой же механизм позволяет объяснить концентрационное увеличение эффективности ап-конверсии и сенсибилизации люминесценции акцепторов.

Благодаря важности количественного учёта перечисленных эффектов задача количественного исследования миграции является актуальной для материалов фотоники. При этом желательно изучать явления, в которых миграция выступает сама по себе, а не как фактор, увеличивающий эффективность другого процесса. В настоящей главе описаны и моделируются два таких явления. Это «спектральная миграция», которой посвящены разделы 3.4, 3.5 и «концентрационная деполяризация» люминесценции (раздел 3.7).



<== предыдущая лекция | следующая лекция ==>
Статистическое моделирование самоорганизации линейных дислокаций | Микроскопическая модель передачи возбуждений для пары центров


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.