русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Построение математической модели сверления лазером


Дата добавления: 2013-12-23; просмотров: 1535; Нарушение авторских прав


Глава 2. Теоретические Математические модели аналитического типа

 

Простейшие аналитические модели могут быть заданы явно в виде функции одной или нескольких переменных.

Обычно в виде функций задаются общие законы природы или общие закономерности, полученные в результате интегрирования дифференциальных уравнений. Примером такой модели может служить знаменитая формула К.Э. Циолковского:

,

определяющая приращение скорости ракеты при импульсном сжигании топлива через скорость истечения рабочего тела v и отношение начальной М0 и конечной Mк масс ракеты.

Модель, заданная в явном виде, дает исчерпывающее описание исследуемого объекта. Она позволяет построить зависимость его характеристик от управляющих факторов, взять производные и найти экстремумы модели, определить характеристики модели в окрестности экстремумов и т.д.

Очень удобна графическая интерпретация таких моделей. Однако модели в виде формул могут быть разработаны только для очень простых объектов.

 

Примером аналитической теоретической модели может служить модель, описывающая глубину отверстия при лазерном сверлении.

Резание и сверление металлов весьма важно для многих областей техники. Значительный интерес представляет создание новых устройств, предназначенных для специальных материалов, а также для тех случаев, когда желательно обеспечить некоторую степень автоматизации указанных процессов. В последнее время для этого были предприняты попытки использования мощных лазеров.

Основная идея состоит в том, чтобы сфокусировать значительную мощность на малой площади поверхности материала, создавая таким образом интенсивный нагрев и испарение с последующим образованием отверстия. При сверлении необходимо постараться обеспечить такие условия процесса, чтобы проделанное отверстие прямо проходило сквозь материал, и избежать, таким образом, затекания расплавленного металла обратно в отверстие и застывания его там.



Построим математическую модель, главная применимость которой – глубокое сверление. При помощи модели попытаемся ответить на вопрос, как быстро можно проделать отверстие, используя пучок излучения высокой мощности, и на какую глубину.

Рассмотрим высокоэнергетический пучок лазерного излучения, сфокусированный на малом участке поверхности металла (Рис. 2.1). Определенная доля энергии поглощается, а остальная часть отражается. Поглощение энергии происходит внутри слоя, толщина которого много меньше миллиметра, вызывает поверхностный нагрев материала и рост температуры поверхности. Температура растет не безгранично. Существует два процесса, ограничивающие рост температуры:

- перенос тепла в глубь материала от нагретых к холодным участкам, обусловленный теплопроводностью;

- испарение. Когда температура материала достигает точки кипения, скрытое тепло поглощается без дальнейшего увеличения температуры в процессе испарения материала.

При удалении пара от поверхности материала в металле образуется выемка.

Задача количественного описания этого процесса и вызывает необходимость математического моделирования.

Будем рассматривать модель, описывающую процесс разрушения материала, при котором вся энергия лазерного излучения используется только для испарения материала.

Этот предельный режим испарения может возникать двумя путями:

- когда энергия поступает на поверхность слишком быстро, так что тепло не успевает распространиться в глубь металла;

- плотность мощности пучка постоянна, а распределение температуры впереди границы области испарения приближается к стационарному.

Предположим, что мощность W распределена по некоторой площади А поверхности; излучение приложено по нормали к поверхности (см. рис. 2.1). За интервал времени Dt поступает энергия W×Dt. Пусть глубина возникающей выемки равна DS, тогда объем испарившегося материала равен A×DS. Используя закон сохранения энергии, получим

DS = W×Dt,

где h – количество тепла, требуемое для испарения единицы массы материала; r – плотность материала.

Преобразуем это выражение и положим Dt ® 0, получим скорость роста глубины выемки:

.

Это уравнение показывает, что для любого материала предельная скорость пропорциональна плотности энерговыделения W/A. Интегрируя это уравнение и полагая S = 0 при t = 0, найдем глубину выемки в произвольный момент времени t:

(2.1)

или

,

где E(t) – полная энергия, выделенная источником за промежуток времени (0, t).

Таким образом, в предельном режиме испарения глубина выемки зависит только от полной энергии, поступившей на поверхность. Формула (2.1) представляет собой теоретическую аналитически-разрешимую динамическую детерминированную модель.

На практике всегда существует перенос некоторого количества тепла в материал за счет теплопроводности. Общая задача движения границы раздела фаз с учетом теплопроводности известна как задача Стефана. Ее решение представляет определенные математические трудности.



<== предыдущая лекция | следующая лекция ==>
Геометрическое представление математических моделей | Линейные математические модели


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.