При фиксированном числе разрядов мантиссы любая величина представляется в машине с наибольшей возможной точностью нормализованным числом.
Число х = s"q называется нормализованным, если мантисса q удовлетворяет условию
1> |q| ³ 1/s, (2.4)
т. е. старший разряд мантиссы в s-ричной системе отличен от нуля. В процессе вычислений может получаться ненормализованное число. В этом случае машина, если это предписано командой, автоматически нормализует его («нормализация результата» операции).
Пусть r старших разрядов s-ричной мантиссы равны 0. Тогда нормализация заключается в сдвиге мантиссы на r разрядов влево и уменьшении порядка на r единиц, при этом в младшие r разрядов мантиссы записывается 0. После такой операции число не меняется, а условие (2.4) выполняется. При нулевой мантиссе нормализация невозможна.
В различных ЭВМ применяются представления чисел с плавающей запятой в системах счисления с различными основаниями, но равными целой степени числа 2 (s = 2w), при этом порядок р представляется целым числом, а мантисса q — числом, в котором группы по w двоичных разрядов изображают цифры мантиссы с основанием системы счисления s= 2w.
Примерами применяемых форм чисел с плавающей запятой с различными основаниями системы счисления являются
x=2pq (1 > |q|³1/2);
x=8pq (I > |q| ³ 1/8);
x = l6pq (I > |q| ³ 1/16).
В скобках указаны соответствующие условия получения нормализованных чисел.
Использование для чисел с плавающей запятой недвоичного основания несколько уменьшает точность вычислений (при заданном числе разрядов мантиссы), но позволяет увеличить диапазон представляемых в машине чисел и ускорить выполнение некоторых операций, в частности нормализации, за счет того, что сдвиг может производиться сразу на несколько двоичных разрядов (на четыре разряда для s = 16). Кроме того, уменьшается вероятность появления ненормализованных чисел в ходе вычислений.
Диапазон представимых в машине чисел с плавающей запятой зависит от основания системы счисления и числа разрядов, выделенных для изображения порядка. Точность вычислений при плавающей запятой определяется числом разрядов мантиссы. С увеличением числа разрядов мантиссы увеличивается точность вычислений, но увеличивается и время выполнения арифметических операций.
Задачи, решаемые на ЭВМ, предъявляют различные требования к точности вычислений. Поэтому во многих машинах используется несколько форматов с плавающей запятой с различным числом разрядов мантиссы.