30.) Численное интегрирование — вычисление значения определённого интеграла.
Численное интегрирование применяется, когда:
- Сама подынтегральная функция не задана аналитически. Например, она представлена в виде таблицы (массива) значений в узлах некоторой расчётной сетки.
2. Аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции. Например,
.
Если функция непрерывна на отрезке [a, b] и ее первообразная может быть определена через известную функцию, то вычисление такого интеграла производится по формуле Ньютона – Лейбница:
.
Алгоритм получения определенного интеграла:
1)Сначала вычисляют значения функции f(xi) = yi в некоторых узлах xi Î[a, b].
2)Затем выбирается интерполяционный многочлен P(x), проходящий через полученные точки (xi, yi), который используется при вычислении приближенного значения интеграла
: 
При реализации такого подхода формулы численного интегрирования принимают следующий общий вид:
,где
- узлы интерполирования, Ai – некоторые коэффициенты, R – остаточный член, характеризующий погрешность формулы.(квадратурная формула)