Если обыкновенные акции обращаются на рынке, оснащенном инвестиционным механизмом, описанным выше, появляется возможность рассчитать теоретическую приведенную цену данного инструмента – ТПЦоа как величину суммарного дисконтированного денежного потока, порождаемого этим финансовым активом. Формальное представление ТПЦоа для описанного выше случая (когда доходность ОА растет с постоянным темпом – g) впервые было разработано М. Гордоном. Ниже приводится вывод формулы для расчета ТПЦоа, получившей название «формула Гордона».
Перепишем в качестве исходного выражения суммарной настоящей стоимости денежного потока ОА формулу 37 (см. выше):
ТПЦоа = ; (37)
Поскольку дивиденды Дt растут с постоянным темпом (g), эту формулу можно представить иначе:
ТПЦоа = ; (38)
Эта возможность связана с тем, что:
Д1 = Д0 ∙ (1+g)1; Д2 = Д0 ∙ (1+g)2 и т.д. (по определению постоянного темпа роста дивидендов Дt).
Для первых n – членов правую часть уравнения (38) можно представить следующим образом:
ТПЦоа = ; (39)
Умножим обе части уравнения (39) на :
∙ ТПЦоа = ; (40)
Вычитая (39) из (40), получим:
{ -1}∙ТПЦоа = ; (41)
При r > g и n → ∞ выражение в фигурных скобках в правой части уравнения (41) стремится к 1. Поэтому получим:
{ -1}∙ТПЦоа = Д0; (42)
Эквивалентно преобразуем левую часть уравнения (42) и умножим обе части уравнения на (1 + g), в результате получим:
(r - g) ∙ ТПЦоа = Д0∙ (1 + g); (43)
Получаем итоговое выражение «формулы Гордона»:
ТПЦоа= ; (44)
где: r – требуемая доходность инвестора.
Или иначе то же самое:
ТПЦоа= ; (45)
Как видно из формул (44 и 45), если работает инвестиционный механизм и дивидендная доходность обыкновенной акции растет с постоянным темпом g, то теоретическая приведенная цена ОА рассчитывается очень просто, однако – только при том условии, что мы можем определить величину требуемой доходности инвестора – r. Как уже говорилось выше, впрямую задать ее (как это делалось при принятии решений о приобретении корпоративных облигаций и привилегированных акций) инвестор не может по целому ряду причин, связанных с необходимостью учета нескольких разновидностей рисков инвестора. У. Шарп разработал математическую модель и организационный механизм реализации модели, названной «Capital Assets Pricing Model», или «модель оценки капитальных активов», сокращенно – САРМ. Лежащая в основе модели САРМ теория стала одной из базовых в ФМ и получила название «Концепция β–коэффициента». Ее суть в следующем.
У. Шарп предложил ввести в оборот специальный коэффициент β как показатель рисковости обыкновенных акций, котируемых на бирже. Он измеряется в безразмерных единицах. При этом предполагается, что средний для рынка показатель всегда β0 = 1, независимо от того, акции каких компаний представлены в листинге фондовой биржи. Для любой конкретной компании коэффициент βј может быть как больше 1, так и меньше. Если βј > 1, это значит, что рисковость пакета акций ј–й компании выше, чем рисковость фондового рынка в целом; если βј < 1, значит, рисковость пакета акций ј–й компании ниже, чем рисковость фондового рынка в целом. При этом «рисковость» понимается весьма специфически: если βј > 1, это значит, что показатели доходности ј–го пакета ОА могут меняться быстрее, чем в среднем по фондовому рынку, и инвестору труднее предвидеть эти изменения; если βј < 1, это значит, что показатели доходности ј–го пакета ОА могут меняться медленнее, чем средние показатели доходности рынка в целом (тогда инвестору легче ориентироваться).
Обычно фактические значения βј разных компаний не превышают 1,5 и не опускается ниже 0,75 (хотя в отдельных случаях значения коэффициента β некоторых компаний могут выходить за эти границы). Со временем βј любой компании стремится к 1.
Чтобы сделать концепцию β–коэффициента практически работающей, необходимо было организовать сеть специализированных консалтинговых фирм, имеющих государственную лицензию на право присваивать любой компании, собирающейся выставлять на продажу свои пакеты обыкновенных акций, конкретное значение коэффициента βј. Соответственно, в университетах развернули подготовку специалистов, умеющих определять степень рисковости обыкновенных акций разных компаний. Чтобы готовить таких специалистов, ученые разработали разные методы[8] оценки коэффициентов βj.
Модель САРМ позволяет рассчитать уровень требуемой доходности инвестора с учетом:
· текущего значения минимально допустимой доходности инвестора – rгко ;
· среднего фактического показателя доходности компаний по рынку в целом – rm; на Нью-Йорской фондовой бирже (NYSE) таким показателем является индекс S&P500, т.е. усредненная величина доходности 500 крупнейших компаний, включенных в листинг NYSE;
· конкретного значения коэффициента β, присвоенного компании, выставляющей свои ОА на продажу (без этого условия ни один пакет ОА не может быть продан на бирже).
При указанных трех условиях (а инвестор эти показатели видит на биржевом экране) уровень требуемой доходности ј–й компании может быть рассчитан инвестором по следующей формуле (которая носит название «модель Шарпа», или САРМ):
rј = rгко + (rm - rгко) ∙ βј; (46)
В содержательном плане выражение (46) говорит о том, что требуемая доходность инвестора складывается из:
· минимально приемлемой доходности ГКО;
· «премии за риск» (rm - rгко), показывающей величину дополнительной доходности, которая зависит от уровня среднерыночной доходности rm (и, соответственно, от «дыхания» рынка в целом);
· степени рисковости ј–го пакета ОА: чем рисковость выше, тем на большую величину βј корректируется «премия за риск»; тем самым выполняется принцип: «выше риск – выше доходность».
Получив процентное значение rј (где ј – индекс названия компании инвестора), инвестор переводит его в безразмерную (относительную) величину и подставляет в формулу Гордона (45) на место «r». Таким образом, определяется величина теоретической приведенной цены ОА до налогообложения дохода инвестора (ТПЦоа).
Если установлена ставка налога Сн, то дополнительно необходимо скорректировать величину rј на налог: rн = rј ∙ (1 – Сн); другими словами, нужно уменьшить уровень рассчитанной величины требуемой доходности на долю, соответствующую налоговой ставке. Если инвестор не может себе позволить снижения величины rј, то данный пакет ОА для него становится безразличным.
Наконец, инвестор рассчитывает окончательную величину теоретической приведенной цены обыкновенной акции с учетом налогообложения по формуле Гордона (47):
ТПЦноа = ; (47)
Вывод: инвестор будет приобретать обыкновенную акцию ј–й компании по цене, не превышающей величину ТПЦноа. Если же она выставлена на продажу по более высокой цене РЦоа > ТПЦноа , то инвестору следует воздержаться от вложений в такой финансовый инструмент, поскольку денежный поток, порождаемый этим инструментом (активом) не окупит сегодняшних вложений с учетом всех, рассмотренных выше рисков. Если этого принципа начнут придерживаться многие инвесторы, цена, назначенная эмитентом (РЦоа), начнет падать. Когда она сравняется с ТПЦноа, ее начнут покупать.
В России данный механизм принятия решений пока не работает, поскольку необходимых организационных условий для определения объективной независимой оценки рисковости пакетов ОА российских компаний государство не создало.