русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Перевод числа из одной системы счисления в другую


Дата добавления: 2014-12-01; просмотров: 7928; Нарушение авторских прав


1. Перевод целого числа десятичного кода в любую другую систему счисления осуществляется по следующему правилу: нужно делить исходное десятичное число на величину основания той системы счисления, в которую переводится число, а затем частное от деления снова делить на то же основание и так до тех пор, пока частное не окажется меньше делителя. Полученные остатки от деления и последнее частное будут представлять собой разряды числа в новой системе счисления. Чтение нового кода осуществляется с конца, т.е. последнее частное дает цифру старшего разряда.

Примеры:

1) перевести десятичное число 11 в двоичную систему счисления:

-          
-      
    -  
         
             
Направление чтения

Искомое двоичное число 1011, т.е. .

2) перевести десятичное число 61819 в шестнадцатеричную систему:

Поскольку , а , искомое шестнадцатеричное число запишется в виде , т.е. .

2. Для перевода чисел из любой системы счисления в десятичную можно использовать запись этого числа в виде полинома (2.1). Выполнив сложение, получаем искомое десятичное число.

Пример.

Перевести восьмеричное число 745 в десятичную систему счисления:

.

Перевод в десятичный код может быть выполнен также по схеме Горнера. Процедура перевода следующая. Старший разряд исходного кода нужно умножить на основание переводимой системы счисления и полученное произведение сложить со следующим символом кода. Полученную сумму вновь умножить на основание и результат сложить со следующим символом и так продолжать до последнего (младшего) разряда кода. Для числа указанные вычисления будут следующими:



.

Схема Горнера особенно удобна при переводе чисел из двоичной системы. Имеем: . Переведем полученное двоичное число в десятичное:

               
               

Искомое десятичное число 485, т.е. .

3. Перевод чисел из любой недесятичной системы счисления в другую недесятичную систему выполняется в следующей последовательности:

– по методике, изложенной в п. 2, перевести исходный код в десятичный;

– по методике, изложенной в п. 1, перевести полученный десятичный код во вторую систему счисления.

Решение упрощается, если основания подлежащих переводу систем удовлетворяют условию (2.3), т.е. , где , – целое положительное число. При этом, если исходное число представлено в системе счисления с основанием , для получения его изображения в системе с основанием достаточно каждый символ исходного кода представить -значным числом в системе счисления с основанием . Примеры такого перевода приведены в п. 2.1.2 для чисел и . Если же исходное число представлено в системе счисления с основанием , для получения его изображения в системе с основанием нужно в последовательности символов исходного кода, начиная с младших разрядов, выделять группы по знаков и каждой из этих групп поставить в соответствие число в системе счисления с основанием . Если последняя группа окажется неполной, ее нужно дополнить нулями со стороны старших разрядов.

Примеры:

1) перевести двоичное число в восьмеричную систему счисления ( ):

Получаем: ;

2) перевести то же двоичное число в шестнадцатеричную систему счисления ( ):

Получаем: .

Последние примеры показывают, что если , а , перевод чисел из системы счисления с основанием в систему с основанием и наоборот может выполняться через промежуточную систему счисления с основанием . В частности, так можно осуществлять перевод чисел из восьмеричной системы в шестнадцатеричную и наоборот через двоичный код, т.е. сначала исходное число представляется в двоичном коде, затем полученная двоичная комбинация разбивается на группы, каждой из которых ставится число во второй системе счисления.



<== предыдущая лекция | следующая лекция ==>
Смешанные системы счисления | Код Грея


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.06 сек.