русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Стационарные случайные процессы


Дата добавления: 2014-11-28; просмотров: 2099; Нарушение авторских прав


Физическое явление при рассмотрении с позиций теории случайных процессов можно описать в любой момент времени путем осреднения величин по множеству выборочных функций, представляющих данный случайный процесс. Рассмотрим, например, множество выборочных функций (называемое также ансамблем), образующее случайный процесс (рис. 7).

 

Рис. 7. Ансамбль выборочных функций, формирующих случайный процесс.

 

Среднее значение (первый момент распределения) случайного процесса в момент времени t1 может быть найдено путем суммирования мгновенных значений каждой выборочной функции ансамбля в момент t1 и деления этой суммы на число выборочных функций. Аналогичным образом корреляция между значениями случайного процесса в два различных момента времени (смешанный момент, называемый автокорреляционной функцией) определяется путем осреднения по ансамблю произведений мгновенных значений процесса в моменты t1 и t1 + t. Иначе говоря, среднее значение mx(t1) и автокорреляционная функция Rx(t1, t1 + t) случайного процесса {x(t)} (фигурные скобки означают ансамбль выборочных функций) определяются из соотношений:

Причем при суммировании предполагается, что появление всех выборочных функций равновероятно.

В общем случае, когда функции mx(t1) и Rx(t1, t1 + t), определяемые данными уравнениями, меняются с изменением момента времени t1, случайный процесс {x(t)} называется нестационарным. В частном случае независимости mx(t1) и Rx(t1, t1 + t) от t1 случайный процесс {x(t)} называется слабо стационарным, или стационарным в широком смысле. Среднее значение слабо стационарных процессов постоянно, а автокорреляционная функция зависит только от величины сдвига t, т. е. mx(t1)= mx и Rx(t1, t1 + t)= Rx(t).

Для случайного процесса {x(t)} можно рассчитать бесконечное множество начальных и смешанных моментов более высоких порядков; их совокупность полностью описывает плотности распределения процесса. Когда все начальные и смешанные моменты распределения не зависят от времени, случайный процесс {x(t)} называется строго стационарным, или стационарным в узком смысле. Для многих практических приложений доказательства слабой стационарности процесса вполне достаточно, чтобы оправдать справедливость предположения о строгой стационарности.





<== предыдущая лекция | следующая лекция ==>
Классификация случайных процессов | Эргодические случайные процессы


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.196 сек.