Первый этап работы любого вычисления - числа, приближения, погрешность.
Второй этап работы - функция, вычисления функции, её приближения. В краце о интерполяции. Интерполяция в простейшем случае заключается в следующем:
Существует какая-то функция, на ней заданы точки (называемые узлами интерполяции), требуется построить (интерполированную) функцию, которая принимала бы в указанных узлах те же значения.
На отрезке заданы n значений аргумента x и соответствующие им значения функции f(x0)=y0; f(x1)=y1; …; f(xn)=yn.
Требуется построить функцию F(x), которая бы принимала в точках x те же значения, что и f(x):
F (x0)=y0; F (x1)=y1… F (xn)=yn
Для чего?
Для того, чтобы:
1. Задача интерполяции. Суметь по полученной функции вычислить значения F(z), где z,
zxi при i=0,n
2. Задача экстраполяции. Суметь по полученной функции вычислить F(z), где z.
Все существующие интерполяционные формулы содержат в себе конечные разности различных порядков.
Введём понятие конечных разностей.
Пусть: y =f(x) - заданная функция
- фиксированная величина приращения аргумента
Тогда - называется первой конечной разностью функции y, или конечной разностью первого порядка.
Вторая конечная разность, или конечная разность второго порядка.
Третья конечная разность, или конечная разность третьего порядка.
Т.о., в общем виде:
Конечная разность n-го порядка.
Пример:
Конечные разности различных порядков удобно располагать в форме таблиц двух видов: горизонтальной и диагональной таблиц разностей
x
y
x0
y0
x1
y1
...
...
...
...
...
Диагональная таблица разностей.
x
y
X0
Y0
X1
Y1
X2
Y2
X3
Y3
Пример: горизонтальная таблица функции y = f(x) = x2при
, x0 = 0 начальное значение, x6=5 конечное значение