русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Метод половинного деления


Дата добавления: 2014-11-28; просмотров: 856; Нарушение авторских прав


Алгоритм метода состоит из следующих операций.

Отрезок [a,b] делят пополам точкой c (c=(a+b)/2) и находят значение функции в точке с. Если f(c)=0, то корень уравнения соответствует точке c. Если f(c)¹0, то можно сузить диапазон поиска корня: перейти от отрезка [a,b] к отрезку [a,c] или [c,b] в зависимости от знака f(c). Если f(a)f(c)<0, то корень находится на отрезке [a,c], и точку с будем считать точкой b; а если f(a)f(c)>0, то корень находится на отрезке [c,b], и точку с будем считать точкой a.


Каждый такой шаг уменьшает в два раза интервал, в котором находится корень уравнения f(x)=0. После нескольких шагов получится отрезок, длина которого будет меньше или равна числу e, т.е. ½a-b½£e. Любая точка такого отрезка, например, один из его концов, подходит в качестве решения поставленной задачи. На рис. 16.2 показано несколько этапов применения алгоритма.


Рис.16.2. Графическая иллюстрация метода половинного деления: 1…5 – интервалы уточнения корней на 1...5 шаге алгоритма


Пример 1. Найти с точностью e=0,001 на отрезке [-2,1] корень уравнения x3+x2+x+1=0. Приведём текст программы, которая решает эту задачу методом половинного деления (результат выводится на экран и, по желанию пользователя, на принтер):

Program Popolam;

Uses Crt, Printer;

Var

a,b,c,eps,a0,b0:real;

k:integer;

ch:char;

 

Function f(x:real):real;

begin

{ Здесь приводим выражение для вычисления функции }

f:=x*x*x+x*x+x+1;

end;

 

Begin

ClrScr;

Writeln(' Решение уравнения методом половинного деления ');

{ Ввод исходных данных }

a:=-2; b:=1; eps:=0.001;

a0:=a; b0:=b; { Запоминаем исходные данные }

{ Начинаем расчет }

k:=0; { Счетчик повторений }

While abs(b-a)>=eps do

begin

k:=k+1;

c:=(a+b)/2;

if f(a)*f(c)<=0 then b:=c



else a:=c;

end;

Writeln(' Уравнение x^3+x^2+x+1=0 на отрезке [',a0:4:1, ',',
b0:4:1, '] имеет корень x = ', c:10:8);

Writeln(' f(x) = ',f(c):10:8);

Writeln('Точность ',eps:10:8, ' достигнута за ',
k,' итераций');

Write(' Печатать результаты на принтере? (Y/N)');

Repeat

ch:=ReadKey;

ch:= UpCase(ch);

Until (ch='Y') or (ch='N');

if ch='Y' then

begin

Writeln(lst,'Решение уравнения методом половинного деления');

Writeln(lst,' Уравнение x^3+x^2+x+1=0 на отрезке [',
a0:4:1, ',', b0:4:1, '] имеет корень x = ', c:10:8);

Writeln(lst,' f(x) = ',f(c):10:8);

Writeln(lst,' Точность ',eps:10:8, ' достигнута за ',
k,' итераций');

Writeln('Печать выполнена. Нажмите ENTER ');

Readln;

end;

End.



<== предыдущая лекция | следующая лекция ==>
Решение нелинейных уравнений численными методами | Метод Ньютона


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.