русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Оптика и свет


Дата добавления: 2014-11-28; просмотров: 650; Нарушение авторских прав


 

 

Геометрическая оптика. Задачи оптики связаны с графическими построениями падающих, преломленных и отраженных лучей.

Рассмотрим задачу построениятраектории преломленных и отраженных лучей при прохождении границы раздела двух прозрачных сред.Углом падения называют угол, образованный лучом и нормалью к поверхности в точке падения. Согласно закону отражения света угол падения луча равен углу отражения. Углом преломления называют угол, образованный лучом, прошедшим через границу раздела двух сред, и нормалью к поверхности в точке падения. Согласно закону преломления света проходящего из среды с показателем преломления n1 в среду с показателем преломления n2 зависимость между углом падения fi1 и углом преломления fi2 имеет вид:

 
 


Y

n1

 
 


fi2

 

X

fi1

 

n2

(X0, Y0)

 

sin(fi2)/sin(fi1)=n1/n2.

 

В случае расположения источника в более плотной среде n1>n2, при угле падения луча большем, чем fip=arcsin(n2/n1) происходит полное отражение луча. В случае расположения источника в менее плотной среде n1<n2 существует оптимальный угол падения луча fio=arctg(n1/n2) при котором потери отраженной и поглощенной энергии наименьшие.

Пусть источник света расположен в среде с n1>n2, а граница раздела сред проходит по оси "Х". Алгоритм построения траектории луча следующий:

1) Задаем координаты и угол выхода луча x0, y0, fi1. Вычисляем fip с использованием формулы: arcsin(x)=arctg(x/Ö(1-x2)).

 

2) Определяем проекции падающего луча: fx1=abs(y0)*tg(fi1); fy1=abs(y0); и строим вектор из т. (x0, y0) в т. (x1=x0+fx1, y1=0).

3) Если fi1<fip, то вычисляем угол преломления fi2, проекции преломленного луча: fx2=abs(y0)*tg(fi2); fy2=abs(y0); и строим вектор из т. (x1, y1) в т. (x2=x1 + fx2, y2=fy2).



4) Определяем проекции отраженного луча: fx3=abs(y0)*tg(fi1); fy3=-abs(y0); и строим вектор из т. (x1, y1) в т. (x3=x1+fx3, y3=fy3).

 

 

Рассмотрим задачу построения траекторий преломленных лучей, проходящих через прозрачную трехгранную призму. Известно, что луч белого цвета разлагается на составляющие цвета из-за разности коэффициента преломления для монохромных лучей, поскольку длина волны зависит от плотности среды.

Например, для стекла - тяжелый флинт: Y 4

2

3

Цвет Красный Желтый Зеленый Синий Фиолетовый

       
   
 
 


"n2" 1, 644 1, 650 1, 66 1, 68 1, 685 1 n1

n2

0 X

Луч, выходящий из источника света под углом "al1" к оси "Х" падает на первую грань призмы под углом "fi1". Преломленный луч падает на вторую грань призмы под углом "fi3" и выходит под углом "al4" к оси "Х".

Алгоритм построения луча, проходящего через призму:

1) Строим призму при заданных углах "fp1" , "fp2" и высоте "h" треугольника,

2) Определяем точку "2": y2=K*h; x2= K*a1; где 0<K<1; a1=h/tg(fp1);

3) Определяем точку "1": x1=x2-L*cos(al1); y1= y2-L*sin(al1); из которой в точку “2” проводим вектор заданной длины "L" под заданным углом al1.

4) Определяем угол падения луча: fi1=Pi/2+al1-fp1; угол преломления луча: fi2:=arcsin(sin(fi1)*n1/n2) и угол наклона луча к оси "Х": al2=al1+fi2-fi1.

5) Решая совместно уравнение для луча и стороны треугольника, определяем точку "3": x3= (x2*tg(al2)+a*tg(fp2)-y2)/(tg(al2)+tg(fp2)); y3:= (a-x3)*tg(fp2); где a= a1+a2; a2=h/tg(fp2); к которой проводим из т. "2" вектор.

6) Определяем угол падения луча: fi3= Pi/2-al2-fp2; угол преломления луча: fi4:=arcsin(sin(fi3)*n2/n1) и угол наклона луча к оси "Х": al4=al2+fi3-fi4.

7) Строим луч, выходящий из т. "3" в т. "4": x4=x3+L*cos(al4); y4=y3+L*sin(al4).

 

 

Рассмотрим задачу построения траектории лучей при отражении от параболического зеркала.Парабола описывается уравнением Y2 = 2*P*X, где X - ось параболы. Фокус параболы находится в точке Xf = P/2, Yf = 0. Приведем алгоритм построения отраженного луча, падающего на параболическое зеркало параллельно оси "X". Известно, что в этом случае отраженные лучи проходят через фокус.

1) В диапазоне 0<=X<=X_Max строим параболу Y = ± Ö (2*P*X).

2) Выбираем некоторую точку на параболе с координатами 0 < Xp < X_Max, Yp= Ö(2*P*Xp). 3) Строим падающий луч - вектор с началом в точке X1=X_Max, Y1=Yp и концом в точке Xp, Yp. Строим отраженный луч - вектор с началом в точке Xp, Yp и концом в точке Y2=0, X2=Xp-Yp/tg(2*fi). Где fi - угол наклона касательной к параболе в точке падения луча. Tg(fi)=P/Yp, Tg(2*fi)=2*Tg(fi)/(1-Tg2(fi)).

 

Y Y

(Xp,Yp) 2

* (X1, Y1) 1

       
   
 
 


(Y2, X2) X_max X

 
 


*

 

Рассмотрим задачу построения траектории лучей при отражении от цилиндрического зеркалав поперечном сечении. Пусть луч выходит из источника с координатами (r1, f1) под углом a1 к оси "X". Радиус зеркала R. После отражения от поверхности в т. "2" луч приходит в т. "3". Обозначим b - угол падения луча в точке "2", f2 - угол с осью "X" радиуса-вектора т. "2". Очевидно, что R*sin(f2-a1)=r1*sin(f1-a1), b=f2-a1; - постоянная величина, f3=f2+2*b+Pi - рекуррентная зависимость. Для расчета координат в точке "i" запишем:

 

fi = fi-1 +2*b+Pi; xi = R*cos(fi); yi = R*sin(fi); i = 3, 4, . . .

 

Алгоритм расчета траектории лучаследующий:

1) Задаем R, r1, f1, a1 и вычисляем x1=r1*cos(f1), y1=r1*sin(f1).

2) Рисуем окружность радиуса R и вычисляем f2= a1+ arcsin(r1/R*sin(f1-a1)).

3) В цикле (до нажатия клавиши) вычисляем: x2=R*cos(f2), y2=R*sin(f2); рисуем вектор из т. "1" в т. "2" , присваиваем: x1=x2, y1=y2, f2=f2+2*b+Pi;

 



<== предыдущая лекция | следующая лекция ==>
Практическое задание N 2. 16 | Практическое задание N 2. 19


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.395 сек.