русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Двумерные преобразования координат


Дата добавления: 2014-11-28; просмотров: 874; Нарушение авторских прав


 

 

Преобразование координат графических объектов используется с целью модификации, зеркального отображения и перемещения объекта. Основные случаи :

- преобразование системы координат, например, из полярной в декартову,

- изображение типовых или повторяющихся деталей объекта,

- построение проекций трехмерных объектов,

- направленная деформация при синтезе новых форм,

- мультипликация и создание узоров.

Различают двумерные ( 2D ) и трехмерные ( 3D) преобразования. Рассмотрим двумерные аффинные преобразования, когда в получаемом новом изображении объекта сохраняется прямолинейность и параллельность прямых, а также деление отрезков в заданных соотношениях.

Общий вид формул двумерных аффинных преобразований:

 

x1= a11 x + a12 y + a13 или в x1a11 a12 a13 x

матричном y1= a21 a22 a23 * y

y1= a21 x + a22 y + a23 виде: z1 0 0 1z

 

Здесь x, y - координаты исходного, а x1, y1 - преобразованного объекта.

Коэффициенты преобразований a I J сохраняют в виде матрицы, расширенной до квадратной, - при для вычисления коэффициентов составного преобразования перемножают соответствующие матрицы коэффициентов типовых преобразований.

Примеры типовых преобразований и соответствующие им матрицы:

( Ф - исходная фигура, Ф1 - преобразованная )

 

Y

dx Ф1 Параллельный 1 0 dx

dy перенос 0 1 dy

Ф 0 0 1

X

 

Y

Ф1 Масштабирование Sx 0 0

Sx = x1/x; Sy = y1/y 0 Sy 0

Ф 0 0 1

X

 
 

 


Y

Ф1

Поворот относительно cos a -sin a 0

начала координат sin a cos a 0

Ф 0 0 1

a

X

 

 

 

Зеркальное отображение:

Y

Ф1 cos(2*A) sin(2*A) 0

относительно оси Y=Х sin(2*A) - cos(2*a) 0

Ф проходящей под углом “A” 0 0 1



0 X

Ф1 относительно начала -1 0 0

координат 0 -1 0

0 0 1

 

Y

Y1

a Ф1

Деформация сдвига : 1 tg(a) 0

Ф X1 в направлении X - a tg(b) 1 0

в направлении Y - b 0 0 1

b

X

 

Составные преобразования обычно представляют в виде комбинаций типовых преобразований. Например, поворот относительно произвольной точки ( Xc, Yc) можно представить как комбинацию трех преобразований:

- параллельный перенос, переводящий центр поворота в начало координат,

- поворот относительно начала координат,

- параллельный перенос, противоположный первоначальному.

 

Перемножение матриц выполняется следующим образом:

 

a11 a12 a13 b11 b12 b13 c11 c12 c13

a21 a22 a23 * b21 b22 b23 = c21 c22 c23

a31 a32 a33 b31 b32 b33 c31 c32 c33

 

где cI J = aI 1* b1 J + aI 2* b2 J + aI 3* bJ 3 , i= 1, 2, 3; j= 1, 2, 3.

 

то есть элемент матрицы “C”, расположенный в I-строке и J-столбце, равен сумме произведений элементов I -ой строки матрицы “A“ на соответствующие элементы J-го столбца матрицы B.

В приведенной ниже программе плоская фигура задается в виде линий, последовательно соединяющих координаты массива точек (xa, ya) на чертеже ( x, y - в системе координат экрана ). Эти координаты подвергаются аффинным преобразованиям, коэффициенты преобразования хранятся в двумерном массиве r. Начальному положению фигуры соответствует единичная матрица R (единицы на главной диагонали, остальные члены - нули). При очередном преобразовании коэффициенты матрицы R пересчитываются путем умножения на нее матрицы этого преобразования (А), получаемая матрица (В) снова записывается в R. Новые координаты x, y высчитываются в процедуре NEW_XY, которая вызывается непосредственно при выводе фигуры на экран процедурой PICTURE.

 

 

uses Graph, Crt;{------- Аффинные преобразования плоских фигур -------- }

var Gd,Gm,n,i,j,k,l,m,xc,yc,xc1,yc1: integer;{-- описание --}

{ глобальных переменных}

xa, ya: array[1..50] of real;{ исходные координаты фигуры }

x, y : array[1..50] of integer;{ новые координаты фигуры }

a, b, r: array[1..3, 1..3] of real; { массивы коэффициентов матриц 3*3 }

 

PROCEDURE I_R; {-------- присвоение матрице R значения единичной ---------}

Begin

for i:=1 to 3 do begin { 1 0 0 }

for j:=1 to 3 do r[i, j]:=0; { 0 1 0 }

r[i, i]:=1; end; { 0 0 1 }

end;

 

PROCEDURE MULT; {---------- умножение матриц А и R: R = B = A*R ------------}

var z: real;

Begin

for i:=1 to 3 do

for j:=1 to 3 do begin z:=0;

for k:=1 to 3 do z:=z+a[i,k]*r[k,j];

b[i,j]:=z end;

for i:=1 to 3 do

for j:=1 to 3 do r[i,j]:=b[i,j] end;

 

PROCEDURE MOVE(dx,dy:real); {----расчет матриц А и R для переноса фигуры ---}

begin { ---на dx, dy--- }

for i:=1 to 3 do begin { 1 0 dx }

for j:=1 to 3 do a[i,j]:=0; { 0 1 dy }

a[i,i]:=1 end; { 0 0 1 }

a[1,3]:=dx; a[2,3]:=dy;

MULT; end;

 

PROCEDURE SCALE(sx,sy:real); {-расчет матриц А и R для масштабирования ----}

begin{--фигуры: по оси Х - умножение на sx, по оси Y - на sy --}

for i:=1 to 3 do

for j:=1 to 3 do a[i,j]:=0; { sx 0 0 }

a[1,1]:=sx; { 0 sy 0 }

a[2,2]:=sy; a[3, 3]:=1; { 0 0 1 }

MULT; end;

 

PROCEDURE ROTATE(alfa: real);{- расчет матриц А и R для поворота фигуры--}

var c, s: real; {---на угол alfa(рад)---}

begin { cos(alfa) -sin(alfa) 0 }

for i:=1 to 3 do { sin(alfa) cos(alfa) 0 }

for j:=1 to 3 do a[i,j]:=0; { 0 0 1 }

a[3,3]:=1;

c:=cos(alfa); a[1,1]:= c; a[2,2]:=c;

s:=sin(alfa); a[1,2]:=-s; a[2,1]:=s;

MULT; end;

PROCEDURE MIRROR(alfa: real);{---- расчет матриц А и R для зеркального ----}

var c, s: real; {----отражения объекта на угол alfa(рад)--}

begin { cos(2*alfa) sin(2*alfa) 0 }

for i:=1 to 3 do { sin(2*alfa) -cos(2*alfa) 0 }

for j:=1 to 3 do a[i,j]:=0; { 0 0 1 }

a[3,3]:=1;

c:=cos(2*alfa); a[1,1]:=c; a[2,2]:=-c;

s:=sin(2*alfa); a[1,2]:=s; a[2,1]:=s;

MULT; end;

PROCEDURE AXES(alfa,beta:real); {расчет матриц А и R сдвига осей координат }

{--- ось x смещается на угол alfa, ось y - на угол beta --}

Begin

for i:=1 to 3 do begin { 1 tg(beta) 0 }

for j:=1 to 3 do a[i,j]:=0; { tg(alfa) 1 0 }

a[i,i]:=1 end; { 0 0 1 }

a[1,2]:=sin(beta)/cos(beta);

a[2,1]:=sin(alfa)/cos(alfa); MULT;

end;

PROCEDURE NEW_XY; {---- расчет новых координат фигуры по исходным ------ }

begin{----- с использованием матрицы преобразования R ------}

for i:=1 to n do begin

x[i]:=round( xa[i]*r[1, 1]+ ya[i]*r[1, 2]+ r[1, 3] );

y[i]:=round( xa[i]*r[2, 1]+ ya[i]*r[2, 2]+ r[2, 3] ) end;

end;

 

PROCEDURE PICTURE;{--- рисование фигуры по координатам X, Y --- }

begin moveto(x[n], y[n]);

for i:=1 to n do lineto(x[i], y[i]);

end;

 

PROCEDURE ROT_XY(xc,yc,beta:real);{- поворот фигуры вокруг точки ( хс, ус)--}

begin{-- на угол beta --}

MOVE(-xc, -yc); { Смещение центра поворота в центр начала координат }

ROTATE(beta); { поворот относительно начала координат }

MOVE(xc, yc);{ обратное смещение фигуры }

end;

{------примеры аффинных преобразований исходной фигуры ------}

Var alfa: real;

BEGIN n:=4;{ число вершин фигуры }

m:=12;{ число зеркальных отображений фигуры }

xc:=5; yc:=5;{"центр" фигуры}

xa[1]:=5; ya[1]:=5;{ координаты вершин фигуры на чертеже }

xa[2]:=70; ya[2]:=20;

xa[3]:=15; ya[3]:=55; 0 X

xa[4]:=20; ya[4]:=20;

 

Gd:= Detect;

InitGraph(Gd, Gm, 'C:\tp7\bgi'); Y

xc1:=GetMaxX div 2; yc1:=GetMaxY div 2;{ центр экрана }

I_R; NEW_XY;{ исходные координаты фигуры }

SetWriteMode(1);

{-------------- Вращение вокруг смещающегося центра -----------}

for l:=1 to 150 do begin

PICTURE;

xc:=xc+3; yc:=yc+2; putpixel(xc, yc, 12);{ смещение центра xc, yc }

MOVE(3,2); { перенос фигуры соответственно смещению центра }

ROT_XY(xc, yc, -0.3);{ поворот на 0.3 рад относительно xc, yc }

delay(2); PICTURE; NEW_XY;

end;

readln; ClearDevice;

SetWriteMode(0);

{--------- Зеркальные отображения фигуры -------------}

I_R; PICTURE;

for i:=1 to n do begin

xa[i]:=x[i]; ya[i]:=y[i] end; {задание исходных координат фигуры}

for l:=1 to m do begin alfa:=2*Pi*(l-1)/m;{угол наклона зеркала к оси X}

{ Line(xc1-round(xc1*cos(alfa)), yc1-round(xc1*sin(alfa)),

xc1+round(xc1*cos(alfa)), yc1+round(xc1*sin(alfa)));{линия зеркала}

MOVE(-xc1,-yc1); MIRROR(alfa); MOVE(xc1,yc1); { преобразования}

NEW_XY; PICTURE;{ расчет и рисование новых координат фигуры}

end;

readln;

CloseGraph;

END.

В первой части программы фигура вращается вокруг точки, перемещающейся по диагонали экрана. Во второй части программы фигура последовательно отображается вокруг осей, проходящих через центр экрана.

 



<== предыдущая лекция | следующая лекция ==>
Построение касательных и нормалей к плоским кривым | Проецирование пространственного изображения тела на плоскость


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.306 сек.