При решении различных задач конструирования используются графические редакторы и специальные программы автоматизированного конструирования. С помощью таких программ можно рисовать на экране различные рисунки, эскизы деталей. В программах графического редактора используются формулы из аналитической геометрии на плоскости и в пространстве. Приведем уравнения, позволяющие строить простейшие фигуры на плоскости. Пусть на плоскости задана правая прямоугольная система координат XoY.
Уравнение прямой, проходящей через две точки "1" и "2":
Y
y2
* (Xt, Yt)
y1 alf
0 x1 x2 X
y = F(x) = D*(x-x1)+y1; или y = D*x+D1;
где D = tg(alf) = (y2-y1)/(x2-x1); D1=y1-D*x1;
Уравнение прямой в общем виде:
F(x,y) = A*x + B*y + C = 0;
где A= y2-y1; B=-(x2-x1); C= -A*x1 - B*y1;
Рассмотрим задачи, связанные с определением принадлежности точки с координатами (Xt, Yt) области, ограниченной заданной прямой Y=F(x).
S = 0. 5*abs((x1-x2)*(y1+y2)+(x2-x3)*(y2+y3)+(x3-x1)*(y3+y1))
Пусть прямая F1(x,y)=0 проходит через точки 1 и 2. Точка (Xt, Yt), лежащая внутри треугольника находится с той же стороны, что и точка 3, тогда неравенства для обоих точек имеют одинаковый знак, т. е. их произведение положительно:
2
1 * (Xt, Yt)
F1(Xt,Yt)* F1(x3,y3) > 0
Аналогично для других сторон треугольника, получаем: