Классификация в любой области знаний необходима. Она позволяет обобщить накопленный опыт, упорядочить понятия предметной области. Стремительное развитие методов математического моделирования и многообразие областей их применения привели появлению большого количества моделей различных видов и к необходимости классификации моделей по тем категориям, которые являются универсальными для всех моделей или необходимы в области построенной модели, например. Приведем пример некоторых категорий: область использования; учёт в модели временного фактора (динамики); отрасль знаний; способ представления моделей; наличие или отсутствие случайных (или неопределенных) факторов; вид критерия эффективности и наложенных ограничений и т.д.
Анализируя математическую литературу, мы выделили наиболее часто встречающиеся признаки классификаций:
1. По методу реализации (в том числе формальному языку) все математические модели можно разбить на аналитические и алгоритмические.
Аналитические – модели, в которых используется стандартный математический язык. Имитационные – модели, в которых использован специальный язык моделирования или универсальный язык программирования.
Аналитические модели могут быть записаны в виде аналитических выражений, т.е. в виде выражений, содержащих счетное число арифметических действий и переходов к пределу, например: . Алгебраическое выражение является частным случаем аналитического выражения, оно обеспечивает в результате точное значение. Существуют также конструкции, позволяющие находить результирующее значение с заданной точностью (например, разложение элементарной функции в степенной ряд). Модели, использующие подобный прием, называют приближенными.
В свою очередь, аналитические модели разбиваются на теоретические и эмпирические модели. Теоретические модели отражают реальные структуры и процессы в исследуемых объектах, то есть, опираются на теорию их работы. Эмпирические модели строятся на основе изучения реакций объекта на изменение условий окружающей среды. При этом теория работы объекта не рассматривается, сам объект представляет собой так называемый «черный ящик», а модель – некоторую интерполяционную зависимость. Эмпирические модели могут быть построены на основе экспериментальных данных. Эти данные получают непосредственно на исследуемых объектах или с помощью их физических моделей.
Если какой-либо процесс не может быть описан в виде аналитической модели, его описывают с помощью специального алгоритма или программы. Такая модель является алгоритмической. При построении алгоритмических моделей используют численный или имитационный подходы. При численном подходе совокупность математических соотношений заменяется конечномерным аналогом (например, переход от функции непрерывного аргумента к функции дискретного аргумента). Затем выполняется построение вычислительного алгоритма, т.е. последовательности арифметических и логических действий. Найденное решение дискретного аналога принимается за приближенное решение исходной задачи. При имитационном подходе дискретизируется сам объект моделирования, строятся модели отдельных элементов системы.
2. По форме представления математических моделей различают:
1) Инвариантная модель – математическая модель представляющаяся системой уравнений (дифференциальных, алгебраических) без учета методов решения этих уравнений.
2) Алгебраическая модель – соотношение моделей связаны с выбранным численным методом решения и записаны в виде алгоритма (последовательности вычислений).
3) Аналитическая модель – представляет собой явные зависимости искомых переменных от заданных величин. Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.
4) Графическая модель представляется в виде графиков, эквивалентных схем, диаграмм и тому подобное. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математической модели.
3. В зависимости от вида критерия эффективности и наложенных ограничений модели подразделяются на линейные и нелинейные. В линейных моделях критерий эффективности и наложенные ограничения являются линейными функциями переменных модели (иначе нелинейные модели). Допущение о линейной зависимости критерия эффективности и совокупности наложенных ограничений от переменных модели на практике вполне приемлемо. Это позволяет для выработки решений использовать хорошо разработанный аппарат линейного программирования.
4. Учитывая фактор времени и области использования, выделяют статические и динамические модели. Если все входящие в модель величины не зависят от времени, то имеем статическую модель объекта или процесса (одномоментный срез информации по объекту). Т.е. статическая модель – это модель, в которой время не является переменной величиной. Динамическая модель позволяет увидеть изменения объекта во времени.
5. В зависимости от числа сторон, принимающих решение, выделяют два типа математических моделей: описательные и нормативные. В описательной модели нет сторон, принимающих решения. Формально число таких сторон в описательной модели равно нулю. Типичным примером подобных моделей является модели систем массового обслуживания. Для построения описательных моделей может также использоваться теория надежности, теория графов, теория вероятностей, метод статистических испытаний (метод Монте-Карло).
Для нормативной модели характерно множество сторон. Принципиально можно выделить два вида нормативных моделей: модели оптимизации и теоретико-игровые. В моделях оптимизации основная задача выработки решений технически сводится к строгой максимизации или минимизации критерия эффективности, т.е. определяются такие значения управляемых переменных, при которых критерий эффективности достигает экстремального значения (максимума или минимума).
Для выработки решений, отображаемых моделями оптимизации, наряду с классическими и новыми вариационными методами (поиск экстремума) наиболее широко используются методы математического программирования (линейное, нелинейное, динамическое). Для теоретико-игровой модели характерна множественность числа сторон (не менее двух). Если имеются две стороны с противоположными интересами, то используется теория игр, если число сторон более двух и между ними невозможны коалиции и компромиссы, то применяется теория бескоалиционных игр n лиц.
6. В зависимости от наличия или отсутствия случайных (или неопределенных) факторов выделяют детерминированные и стохастические математические модели. В детерминированных моделях все взаимосвязи, переменные и константы заданы точно, что приводит к однозначному определению результирующей функции. Детерминированная модель строится в тех случаях, когда факторы, влияющие на исход операции, поддаются достаточно точному измерению или оценке, а случайные факторы либо отсутствуют, либо ими можно пренебречь.
Если часть или все параметры, входящие в модель по своей природе являются случайными величинами или случайными функциями, то модель относят к классу стохастических моделей. В стохастических моделях задаются законы распределения случайных величин, что приводит к вероятностной оценке результирующей функции и реальность отображается как некоторый случайный процесс, ход и исход которого описывается теми или иными характеристиками случайных величин: математическими ожиданиями, дисперсиями, функциями распределения и т.д. Построение такой модели возможно, если имеется достаточный фактический материал для оценки необходимых вероятностных распределений или если теория рассматриваемого явления позволяет определить эти распределения теоретически (на основе формул теории вероятностей, предельных теорем и т.д.).
7. В зависимости от целей моделирования различают дескриптивные, оптимизационные и управленческие модели. В дескриптивных (от лат. descriptio – описание) моделях исследуются законы изменения параметров модели. Например, модель движения материальной точки под воздействием приложенных сил на основании второго закона Ньютона: . Задавая положение и ускорение точки в данный момент времени (входные параметры), массу (собственный параметр) и закон изменения прикладываемых сил (внешние воздействия), можно определить координаты точки и скорость в любой момент времени (выходные данные).
Оптимизационные модели применяются для определения наилучших (оптимальных), на основе некоторого критерия, параметров моделируемого объекта или способов управления этим объектом. Оптимизационные модели строятся с помощью одной и ли нескольких дескриптивных моделей и имеют несколько критериев определения оптимальности. На область значений входных параметров могут быть наложены ограничения в виде равенств или неравенств, связанных с особенностями рассматриваемого объекта или процесса. Примером оптимизационной модели служит составление рациона питания в определенной диете (в качестве входных данных выступают калорийность продукта, ценовые значения стоимости и т.д.).
Управленческие модели применяются для принятия решений в различных областях целенаправленной деятельности человека, когда из всего множества альтернатив выбирают несколько и общий процесс принятия решения представляет собой последовательность таких альтернатив. Например, выбор доклада для поощрения из нескольких подготовленных студентами. Сложность задачи состоит как в неопределенности о входных данных (самостоятельно подготовлен доклад или использован чей-то труд), так и целей (научность работы и ее структура, уровень изложения и уровень подготовки студента, результаты эксперимента и полученные выводы). Так как оптимальность принятого решения в одной и той же ситуации может трактоваться различным образом, то вид критерия оптимальности в управленческих моделях заранее не фиксируется. Методы формирования критериев оптимальности в зависимости от вида неопределенности рассматриваются в теории выбора и принятия решений, базирующейся на теории игр и исследовании операций.
8. По методу исследования различают аналитические, численные и имитационные модели. Аналитической моделью называют такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат. Численная модель характеризуется зависимостью, которая допускает только частные численные решения для конкретных начальных условий и количественных параметров модели. Имитационная модель – это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и фиксировать интересующие характеристики [7]. Далее будут более подробно рассмотрены некоторые аналитические и имитационные модели, изучение именно этих видов моделей связано со спецификой профессиональной деятельности студентов указанного направления подготовки.
1.4. Графическое представление математических моделей
В математике формы связи между величинами могут быть представлены уравнениями вида независимая переменная (аргумент), y – зависимая переменная (функция). В теории математического моделирования независимую переменную называют фактором, зависимую – откликом. Причем в зависимости от области построения математической модели терминология несколько видоизменяется. Некоторые примеры определений фактора и отклика, в зависимости от области исследования, приведены в таблице 1.
Таблица 1. Некоторые определения понятий «фактор» и «отклик»
понятие
определение понятия
фактор
- элемент воздействия на систему (медико-биологическую), обладающий целостностью эффекта [8];
- признаки, обуславливающие изменение других, связанных с ними, признаков, при этом признаки, изменяющиеся под действием факторных признаков, называют результативными (термин «отклик» не применяется) [12];
- параметры, полностью или частично регулируемые или легко поддающиеся регистрации и прогнозу [1];
отклик
- значение измеряемого признака [12];
- выходные параметры, характеризующие поведение или эффективность функционирования исследуемой системы [1];
Представляя графически математическую модель, мы будем считать факторы и отклики переменными величинами, значения которых принадлежат множеству действительных чисел.
Графическим представлением математической модели являетсянекоторая поверхность отклика, соответствующая расположению точек в k-мерном факторном пространстве Х. Наглядно можно представить себе только одномерную и двухмерную поверхности отклика. В первом случае это множество точек на действительной плоскости, а во втором – множество точек, образующих поверхность в пространстве (для изображения таких точек удобно применять линии уровня – способ изображения рельефа поверхности пространства, построенного в двумерном факторном пространстве Х (Рис. 8).
Рис. 8
Область, в которой определена поверхность отклика, называется областью определения Х*. Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х) и выделяется с помощью ограничений, наложенных на управляющие переменные xi , записанных в виде равенств:
xi = Ci , i = 1,…, m;
fj(x) = Cj, j = 1,…, l
или неравенств:
ximin £ xi£ ximax , i = 1,…, k;
fj(x) £ Cj, j = 1,…, n,
При этом функции fj(x) могут зависеть как одновременно от всех переменных, так и от некоторой их части.
Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания, ограничения по запасам сырья).
Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности. Количество вершин (впадин) определяет модальность поверхности отклика. Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной.
Характер изменения функции при этом может быть различным (Рис. 9).
(а) (б) (в)
Рис. 9
Модель может иметь точки разрыва первого рода (Рис. 9 (а)), точки разрыва второго рода (Рис. 9(б)). На рисунке 9(в) показана непрерывно-дифференцируемая унимодальная модель.
Для всех трех случаев, представленных на рисунке 9, выполняется общее требование унимодальности:
если W(x*) – экстремум W, то из условия х1 < x2 < x* (x1 > x2 > x*) следует W(x1) < W(x2) < W(x*) , если экстремум – максимум, или W(x1) > W(x2) > W(x*) , если экстремум – минимум, то есть, по мере удаления от экстремальной точки значение функции W(x) непрерывно уменьшается (увеличивается).
Наряду с унимодальными рассматривают полимодальные модели (Рис.10).
Рис. 10
Другим важным свойством поверхности отклика является ее контрастность, показывающая чувствительность результирующей функции к изменению факторов. Контрастность характеризуется величинами производных. Продемонстрируем характеристики контрастности на примере двумерной поверхности отклика (Рис. 11).
Точка а расположена на «склоне», характеризующем равную контрастность по всем переменным хi (i=1,2), точка b расположена в «овраге», в котором различная контрастность по различным переменным (имеем плохую обусловленность функции), точка с расположена на «плато», на котором низкая контрастность по всем переменным хi говорит о близости экстремума.
1.5. Основные методы построения математических моделей
Приведем классификацию методов формализованного представления моделируемых систем Волковой В.Н. и Денисова А.А.[5]. Авторами выделены аналитические, статистические, теоретико-множественные, лингвистические, логические, графические методы. Основная терминология, примеры теорий, развивающихся на базе описанных классов методов, а также сфера и возможности их применения предложены в приложении 1.
В практике моделирования систем наибольшее распространение получили аналитические и статистические методы.
1) Аналитические методы построения математических моделей.
Основу терминологического аппарата аналитических методов построения математических моделей составляют понятия классической математики (формула, функция, уравнение и система уравнений, неравенство, производная, интеграл и т.д.). Для этих методов характерна четкость и обоснованность терминологии с использованием языка классической математики.
На основе аналитических представлений возникли и получили развитие такие математические теории, как классический математический анализ (например, методы исследования функций), так и современные основы математического программирования и теории игр. К тому же, математическое программирование (линейное, нелинейное, динамическое, целочисленное и т.д.) содержит как средства постановки задачи, так и расширяет возможности доказательства адекватности модели, в отличие от ряда других направлений математики. Идеи оптимального математического программирования для решения экономических (в частности, решения задачи оптимального раскроя листа фанеры) задач были предложены Л.В. Канторовичем.
Поясним особенности метода на примере.
Пример. Предположим, что для производства двух видов продукций А и В нужно использовать сырьё трёх видов. При этом на изготовление единицы продукции вида А расходуется 4ед. сырья первого вида, 2 ед. 2-го и 3ед. 3-го вида. На изготовление единицы продукции вида В расходуется 2ед. сырья 1-го вида, 5 ед. 2-го вида и 4 ед. 3-го вида сырья. На складе фабрики имеется 35 ед. сырья 1-го вида, 43 – 2-го, 40 – 3-го вида. От реализации единицы продукции вида А фабрика имеет прибыль 5 тыс. руб., а от реализации единицы продукции вида В прибыль составляет 9 тыс. руб. Необходимо составить математическую модель задачи, в которой предусматривается получение максимальной прибыли.
Нормы расхода сырья каждого вида на изготовление единицы данного вида продукции приведены в таблице. В ней же указаны прибыль от реализации каждого вида продукции и общее количества сырья данного вида, которое может быть использовано предприятием.
Вид сырья
Запасы сырья
Расход сырья на 1 ед. продукции
А
В
Прибыль от реализации 1 ед. продукции
Обозначим через х1 и х2 объем выпускаемой продукции видов А и В соответственно. Затраты материала первого сорта на план составят 4х1 + 2х2, и они не должны превосходить запасов, т.е. 35 кг:
4х1 + 2х2 35.
Аналогичны ограничения по материалу второго сорта:
2х1 + 5х2 43,
и по материалу третьего сорта
3х1 + 4х2 40.
Прибыль от реализации х1 единиц продукции А и х2 единиц продукции В составит z = 5x1+ 9x2 (целевая функция).
Получили модель задачи:
Графическое решение задачи приведено на рисунке 11.
Оптимальное (наилучшее, т.е. максимум функции z) решение задачи – в точке А (решение пояснено в главе 5).
Получили, что х1=4, х2=7, значение функции z в точке А: .
Таким образом, значение максимальной прибыли равно 83 тыс. руб.
Рис. 11
Кроме графического существует еще ряд специальных методов решения задачи (например, симплекс-метод) или применяются пакеты прикладных программ, их реализующих. В зависимости от вида целевой функции различают линейное и нелинейное программирование, в зависимости от характера переменных выделяют целочисленное программирование.
Можно выделить общие черты математического программирования:
1) введение понятия целевой функции и ограничений являются средствами постановки задачи;
2) возможно объединение в одной модели разнородных критериев (разных размерностей, в примере – запасы сырья и прибыль);
3) модель математического программирования допускает выход на границу области допустимых значений переменных;
4) возможность реализации пошагового алгоритма получения результатов (пошаговое приближение к оптимальному решению);
5) наглядность, достигаемая посредством геометрической интерпретацией задачи, помогающая в тех случаях, когда невозможно решить задачу формально.
2) Статистические методы построения математических моделей.
Статистические методы построения математических моделей получили распространение и начали широко применяться с развитием теории вероятностей в 19 веке. В их основе лежат вероятностные закономерности случайных (стохастических) событий, отображающие реальные явления. Термин «стохастические» - уточнение понятия «случайные», указывает на заранее заданные, определенные причины, воздействующие на процесс, а понятие «случайные» характеризуется независимостью от воздействия или отсутствия таких причин.
Статистические закономерности представлены в виде дискретных случайных величин и закономерностей появления их значений или в виде непрерывных зависимостей распределения событий (процессов). Теоретические основы построения стохастических моделей подробно описаны в главе 2.
Контрольные вопросы
1. Сформулируйте основную задачу математического моделирования.
2. Дайте определение математической модели.
3. Перечислите основные недостатки экспериментального подхода в исследовании.
4. Перечислите основные этапы построения модели.
5. Перечислите виды математических моделей.
6. Дайте краткую характеристику видов моделей.
7. Какой вид принимает математическая модель, представленная геометрически?
8. Как задаются математические модели аналитического типа?
Задания
1. Составить математическую модель решения задачи и провести классификацию модели:
1) Определить наибольшую вместимость цилиндрического ведра, поверхность которого (без крышки) равна S.
2) Предприятие обеспечивает регулярных выпуск продукции при безотказной поставке комплектующих от двух смежников. Вероятность отказа в поставке от первого из смежников – , от второго – . Найти вероятность сбоя в работе предприятия.
2. Модель Мальтуса (1798) описывает размножение популяции со скоростью, пропорциональной ее численности. В дискретном виде этот закон представляет собой геометрическую прогрессию: ; или .Закон, записанный в виде дифференциального уравнения, представляет собой модель экспоненциального роста популяции и хорошо описывает рост клеточных популяций в отсутствии какого-либо лимитирования: . Задайте начальные условия и продемонстрируйте работу модели.