Виды подобия различаются по двум основным признакам:
I. степень соответствия параметров оригинала и модели (абсолютное и неабсолютное или практическое подобие, которое может быть полным, неполным и приближенным);
II. адекватность физической природы подобных явлений (математическое подобие и физическое подобие, которое может быть механическим, тепловым, электрическим и т.п.)
Сходственные величины (точки) – это величины, которые, так или иначе, соответствуют величинам другого объекта. Сходственные функции отличаются друг от друга аргументом и постоянными.
Сходственные переменные – переменные величины, которые входят в сходственные функции.
x2 ~ y2
Сходственные уравнения – получаются из сходственных функций путем преобразования к однородному (равному нулю) уравнению при дальнейшем приравнивании между собой.
Два объекта абсолютно подобныдруг другу, если в сходственные моменты времени в сходственных точках пространства параметры одного объекта Pi находятся в некотором соответствии с параметрами другого объекта Ri .
Pi/ Ri = mi Þ а) mi = const ® геометрическое подобие
б) mi ¹ const ® аффинное или физическое подобие
mi = f(bi)
Абсолютное подобие в значительной мере носит абстрактный характер. Реализуется только в геометрических построениях и в отдельных видах математического подобия.
Практическое подобие отличается от абсолютного тем, что рассматриваются не все процессы в сравниваемых объектах. В зависимости от того какие процессы рассматриваются. Различают полное, неполноеи приближенное подобие.
· Полное практическое (слово «практическое» далее опускается) подобие - подобие протекания во времени и в пространстве только тех процессов, которые существенны для данного исследования. (Если, например, электромеханические явления в синхронных генераторах полностью подобны, то все процессы изменения во времени токов, напряжений, вращающих моментов и изменение во времени и в пространстве распределения магнитных и электрических полей отличаются только масштабами. При этом тепловые явления могут быть неподобными, так как они не влияют на подобие исследуемых электромеханических процессов).
· Неполноеподобие - подобие протекания процессов только во времени или только в пространстве. (Например, есть подобие электромеханических процессов во времени, но нет подобия распространения полей).
· Приближенноеподобие - характеризуется наличием допущений, приводящих к допустимым искажениям одного из процессов. Приближенное подобие бывает также полным и неполным. (Например, подобие генераторов, устанавливаемое по упрощенным уравнениям, которые не учитывают апериодическую составляющую тока статора и периодическую составляющую тока ротора.)
По II признаку различают математическое и физическоеподобие.
· Физическое подобие - когда одинакова физическая природа подобных явлений. Бывает полное, неполное и приближенное. Например: механически подобным процессам ставятся в соответствие - механические, электрическим - электрические, тепловым - тепловые и т.д., т. е. модель функционирует на тех же физических законах, что и сам объект.
· Математическоеподобие - когда сходственные параметры сравниваемых процессов различной физической природы соответствуют друг другу. Бывает полное, неполное и приближенное.
Пример математического подобия:
1) Уравнение переходного процесса в электрической цепи (последовательное соединение резистора R, индуктивности L и конденсатора C), включенной на переменное напряжение u, изменяющееся во времени t по синусоидальному закону с угловой скоростью w. Где q заряд на пластинах конденсатора С.
2) Уравнение процесса вынужденных механических колебаний в вязкой среде груза массы M на пружине жесткостью с, под действием возмущающей силы F = sin wt и пропорциональной скорости движения груза v силы сопротивления вязкой среды F = - kv, где l - расстояние, на которое перемещается груз, а k – коэффициент вязкости среды, в которой перемещается маятник.
Сходственными параметрами в данном случае будут M и L, k и R, c и C, u и F, а электрический колебательный контур может служить аналоговой моделью объекта - оригинала (колеблющегося на пружине груза), наблюдаемый процесс в колебательном контуре будет одновременно решением дифференциального уравнения, описывающего движение груза.
Таким образом, теория подобия позволяет установить наличие подобия между двумя процессами или разработать способы получения этого подобия.