русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Понятие подобия


Дата добавления: 2014-11-27; просмотров: 2281; Нарушение авторских прав


 

Особое место среди математических моделей занимают подобные. Если при аналогии двух объектов распространение свойств одного объекта на другой носит характер предположения и нуждается в проверке, то при подобии знание свойств одного объекта значит знание свойств другого объекта.

Подобие - это полная математическая аналогия при наличии пропорциональности между сходственными переменными, неизменно сохраняющаяся при всех возможных значениях этих переменных, удовлетворяющих сходственным уравнениям.

Впервые понятие «подобие» появилось в геометрии.

Геометрическое подобие – определяют подобность геометрических фигур по сходственным характеристикам. Многоугольник с определенным количеством сторон n, подобен другому многоугольнику с таким же количеством сторон n, если соответствующие углы многоугольников равны, а соответствующие стороны пропорциональны. Определение геометрического подобия многоугольников, на примере треугольников, состоит в следующем:

треугольники подобны, если у них сходственные стороны пропорциональны, а сходственные углы равны и, т. е. выполняются следующие равенства:

 

Рис.5 Подобие треугольников

 

, (1)

 

где mL и mm - масштабные коэффициенты (масштабы) величин сторон и углов, характеризующие пропорциональность сходственных параметров.

(Оговорка: если mL и mm называются масштабными коэффициентами, то величины обратные им , т.е. 1/mL и 1/mm будут называться масштабами и обозначаться, соответственно, ML и Mm или наоборот, или вообще не делается различия между терминами «масштаб» и «масштабный коэффициент»).

На практике при геометрическом подобии используются не характеристики длин сторон многоугольника, а их координаты.

Если ввести систему прямоугольных координат X, Y, то при геометрическом подобии все координаты xiA, yiA первого многоугольника пропорциональны соответствующим координатам xiB, yiB второго многоугольника, т.е. выполняются соотношения



xiA, / xiB =mx; yiA / yiB = my; mx = my,

где xi и yi координаты любой точки, находящейся на отрезках прямых, определяющих контуры соответствующего многоугольника; mx и my - масштабы.

Данный вид подобия может существовать и в пространстве большей размерности: трех - и более мерном.

Дальнейшее развитие понятия подобие является - аффинное подобие, при котором допускается неравенство масштабов по отдельным координатным осям.

 

Рис.6 Превращение параллелепипеда в куб.

 

При аффинном подобии для сходственных точек в трехмерном координатном пространстве будут справедливы следующие соотношения:

xiA / xiB = mx; yiA / yiB = my; ziA / ziB = mz; mx¹ my ¹ mz.

При этом требуется введения специальных преобразующих функций, осуществляющих взаимосвязь между координатами моделей и объекта, часто - нелинейных.

Пример: установить условия аффинного подобия на рис. 4, отрезки линий e1 - l1 являются не линейно сходственными линиями e2 - l2, точки e1, f1, g1, h1, i1 соответствуют точкам e2, f2, g2, h2, i2.

 

Рис.7 Нелинейное преобразование

 

Уравнения для контуров e1 - i1 и e2 - i2 имеет вид:

x1 + y1 = 6; x22 + y22 = 24.

Вводятся масштабные коэффициенты Fx = x1 / X1 и Fy = y1 / Y1, вид которых пока неизвестен, для уравнения первого контура можно записать:

X1 Fx + Y1 Fy = 6,

где X1 и Y1 преобразованные в область B значения x1 и y1 из области A. После тождественных преобразований уравнение выглядит:

[(2X1 / Ö x1) Fx]2 + [(2Y1 / Ö y1) Fy]2 = 24,

таким образом Fx = Ö x1 / 2; Fy = Ö y1 / 2 и, следовательно :

x2 = 2Ö x1 и y2 = 2Ö y1.

В приведенном примере функции преобразования Fx и Fy имеют одинаковый вид, но нелинейный характер.

Следующий пример: даны две сходственные функции: , если масштабы my = y1 / y2: mx = x1 /x2, соответственно равны 2 и 4, то функции подобны.

 

Рис.8 Подобные функции (пример)

 

В этом примере переменные имеют различные масштабные коэффициенты по координатным осям.

Пример. Имеются два генератора переменного тока. Их описывает функция зависимости напряжения от времени: и . Выражения для масштабов имеют вид mu = u1 / u2, mt = t1 / t2. Время, входящее в одну формулу и время, входящее в другую формулу имеют вполне определенный физический смысл, так как t1 и t2 такие различные значения одной и то же величины t, при которых фиксируются значения различных зависимых переменных u1(t) и u2(t).

Физическое и временное подобие имеет место при mu = 10 и mt = 2. Масштаб mu показывает отношение амплитуд напряжений u1 и u2, масштаб mt - отношение периодов T1 = 4c и T2 = 2c.

Рис.9 Подобие генераторов (пример)

 

В общем случае временного подобия безразмерный масштаб времени представляет отношение сходственных временных интервалов, которым соответствует неизменное отношение значений или приращений подобных временных функций. Этими параметрами могут быть периоды колебаний (как в примере), постоянные времени, длительности переходных процессов, временные задержки и т.д.

Если, например, имеются две подобные САУ, то, установив время переходного процесса одной из них t1 и зная временной масштаб mt, можно найти время переходного процесса другой системы: t2 = t1 / mt.

 



<== предыдущая лекция | следующая лекция ==>
Аналогия. | Подобие физических процессов (объектов)


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 8.25 сек.