• расчет показателей развития динамики экономических процессов.
Так как наличие аномальных наблюдений приводит к искажению результатов моделирования, то необходимо убедиться в отсутствии аномалий данных. В качестве примера аномалии может служить скачок курса доллара, зафиксированный в «черный вторник».
Для диагностики аномальных наблюдений разработаны различные критерии, например метод Ирвина [1]. Для всех или только для подозреваемых в аномальности наблюдений вычисляется величина t:
где
Если рассчитанная величина t, превышает табличный уровень (например, для 10 наблюдений значение критерия Ирвина равно 1,5), то уровень ytсчитается аномальным. Аномальные наблюдения необходимо исключить из временного ряда и заменить их расчетными значениями (самый простой способ замены - в качестве нового значения принять среднее из двух соседних значений).
Следующая процедура этапа предварительного анализа данных - выявление наличия тенденций в развитии исследуемого показателя. Отметим, что тенденция прослеживается не только в увеличении или уменьшении среднего текущего значения временного ряда, но она присуща и другим его характеристикам: дисперсии, автокорреляции, корреляции с другими показателями и т.д. Тенденцию среднего визуально можно определить из графика исходных данных, а более точно - с помощью метода Фостера-Стьюарта, метода проверки существенности разности средних и т.п., подробное описание которых дано в работе [1].
Наличие тенденции среднего уровня на графике становится более заметным, когда на нем отражены сглаженные значения исходных данных.
Процедура сглаживания необходима при построении некоторых математических моделей и для устранения аномальных наблюдений. Чаще всего для сглаживания применяются методы простой скользящей средней, взвешенной скользящей средней и экспоненциального сглаживания.
Традиционными показателями, характеризующими развитие экономических процессов, были и остаются показатели роста и прироста. Для характеристики динамики изменения экономических показателей все чаще используется понятие автокорреляции, которая характеризует не только взаимозависимость уровней одного и того же ряда, относящихся к разным моментам наблюдений, но и степень устойчивости развития процесса во времени, величину оптимального периода прогнозирования и т.п.