русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Спектр прямоугольного импульса


Дата добавления: 2014-11-27; просмотров: 3653; Нарушение авторских прав


Для анализа переходных процессов при воздействии на цепь сигналов произвольной формы наряду с временным и оператор­ным методом широко используется частотный метод анализа, бази­рующийся на спектральных представлениях сигнала.

Для непериодических сигналов используются спектральные представления, основанные на паре преобразований Фурье. Преоб­разование Фурье может быть получено предельным переходом от ряда Фурье (5.6). Для этого зададим непериодический сигнал f(t), удовлетворяющий условию абсолютной интегрируемости в беско-

неч­ных пределах (рис. 9.1): . С физической точки

зрения, это означает, что задается реализуемый сигнал с конечной энергией; при этом

где М, с0 положительные постоян­ные величины.

Условие (9.1) означает, что модуль |f(t)| имеет ограниченный показатель роста. Превратим мысленно этот сиг­нал в периодиче­ ский повторением его через период Т (см. рис. 9.1). К полу­ченному таким образом сигналу при­ме­нимо разло­жение (5.6), которое пос­ле перехода к переменной t можно записать в виде

где

После подстановки Аk в уравнение (9.2) с учетом (9.3) получаем

Переходя в уравнении (9.4) учитывая, что при этом w1 dw и kw1 w, а сумма вырождается в интеграл, полу­чаем для исходного сигнала

Внутренний интеграл в уравнении (9.5) носит название спектра сигнала F(jw):

Тогда формула (9.5) принимает вид

Уравнения (9.6) и (9.7) являются основными в теории спект­рального анализа, причем (9.6) называетсяпрямым, а (9.7) — об­ратным преобразованием Фурье. По аналогии с Аk спектр F(jw) является в общем случае комплексной функцией частоты и может быть записан в алгебраической форме

и показательной форме

где

Модуль

определяет амплитудный, а аргумент

фазовый спектр сигнала. Причем, как и для периодического сигнала, амплитудный спектр является четной, а фазовый — нечет­ной функцией частоты. Физический смысл преобразования Фурье лучше всего проявляется при представлении обратного преоб­разования (9.7) в тригонометрической форме. Если подставить вместо F(jw) в (9.7) его значение из (9.9), то получим



Учитывая, что |F(jw)| — четная, а синус — нечетная функция частоты интеграл от второго слагаемого равен нулю. Следова­тельно, принимая во внимание четность подынтегрального выраже­ния в первом слагаемом, обратное преобразование Фурье имеет вид

Из (9.13) следует важнейший вывод о том, что непериодиче­ский сигнал может быть представлен пределом суммы (интеграл) бесконечно большого числа бесконечно малых гармонических ко­лебаний с амплитудами (1/p)|F(jw)| и начальными фазами j = j(w), причем, учитывая, что разность частот соседних гармоник беско­нечно мала Dw = dw, то F(jw) в уравнении (9.13) представляет непрерывный сплошной спектр в отличии от спектра периодиче­ского сигнала, который является дискретным (линейчатым) (см, гл. 5). Поэтому F(jw) называют комплексной спектральной плот­ностью, a |F(jw)| — спектральной плотностью амплитуд неперио­дичес­кого сигнала.

Смысл комплексного спектра F(jw) следует из связи между спектрами периодических и непериодических сигналов. Сравнение уравнений (9.3) с (9.6) позволяет установить эту связь между спектрами:

и спектр комплексных амплитуд Ak обращается в комплексную спектральную плотность F(jw).

Из (9.14) следует и другой важный вывод: модуль спектраль­ной плотности непериодического сигнала и огибающая линейчатого спектра периодического сигнала, полученного повторением с пе­риодом Тнепериодического сигнала, совпадают по форме и отли­чаются только масштабом. Это наглядно можно проиллюстриро­вать на примере периодической последовательности прямоуголь­ных импульсов (см. рис. 5.3, а): с увеличением периода (скваж­ности q) спектр становится гуще (см. рис. 5.4, б) и в пределе при T = ¥ периодический сигнал превращается в непериодический (рис. 9.2), а дискретный спектр обращается в сплошной (рис. 9.3). При этом огибающая как линейчатого, так и сплошного спектра описывается функцией отсчетов (5.29): sinx/x.


Рассмотрим некоторые основные свойства преобразования Фурье. Если сигнал f(t) является четной функцией времени, то, его спектр F(jw) вещественный. Действительно, согласно (9.6) для F(jw) можно записать:

Второй интеграл равен нулю в силу нечетности подынтеграль­ной функции, следовательно,

Аналогично при нечетности сигнала f(t) спектр F(jw) является чисто мнимым.

Важным свойством преобразования Фурье является взаимоза­меняемость переменных t и w. Для четного сигнала f(t) и веще­ственного спектра F(jw)можем заменить в преобразовании (9.6) знаки передjwt:

Тогда сравнивая (9.16) и (9.7) видим их подобие. Взаимозаме­няемость переменных в преобразовании Фурье позволяет устано­вить связь между частотными и временными характеристиками сигнала (см. § 9.5).

В соответствии с (9.8) и (9.9) сигнал может быть задан либо с помощью своего амплитудного |F(jw)| и фазового спектра j(w), либо с помощью вещественной A(w) и мнимой частей B(w) спектра сигнала. Причем, все они взаимосвязаны между собой согласно (9.11)—(9.12), т. е. нельзя задавать независимо амплитудный |F(jw)| и фазовый спектр j(w), или



<== предыдущая лекция | следующая лекция ==>
Частотно-временное представление сигналов | Спектры модулированных колебаний


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.