русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

МИНИМИЗАЦИЯ ЧИСЛА ВНУТРЕННИХ СОСТОЯНИЙ ПОЛНОСТЬЮ ОПРЕДЕЛЕННЫХ АВТОМАТОВ.


Дата добавления: 2014-11-27; просмотров: 2753; Нарушение авторских прав


 

Рассмотрим метод минимизации полностью определенных автоматов, предложенный Ауфенкампом и Хоном.

Основная идея этого метода заключается в разбиении всех состояний исходного абстрактного автомата на попарно непересекающиеся классы эквивалентных состояний и замене каждого класса эквивалентности одним состоянием. Т.о. получающийся в результате минимальный автомат имеет столько состояний, на сколько классов эквивалентности разбиваются состояния исходного автомата.

Для пользования методом введем несколько определений.

Два состояния абстрактного автомата называются 1-эквивалентными в том случае, если реакции автомата в этих состояниях на всевозможные входные слова совпадают.

Объединение всех 1-эквивалентных состояний абстрактного автомата образует 1-класс эквивалентности.

1-эквивалентные состояния автомата называются 2-эквивалентными, если они переводятся любым входным сигналом также в 1-эквивалентные состояния.

Объединение всех 2-эквивалентных состояний образует 2-класс эквивалентности.

По индукции можно распространить определение до i-эквивалентных состояний и i-классов эквивалентности.

Если для некоторого i разбиения состояний автомата на ( i +1) - классы совпадает с разбиением на i-классы, то оно является разбиением и на ¥ - классы эквивалентности.

Разбиение множества внутренних состояний автомата на ¥ - классы и является требуемым разбиением на классы эквивалентности, при этом такое разбиение может быть получено за конечное число шагов.

Все вышеизложенное непосредственно применимо к минимизации автомата Мили. При минимизации полностью определенных автоматов Мура вводится понятие 0-эквивалентности состояний и разбиение множества состояний на 0-эквивалентные классы: к такому классу относятся одинаково отмеченные состояния автомата Мура.

Если два 0-эквивалентных состояния любым входным сигналом переводится в два 0-эквивалентных состояния, то они называются 1-эквивалентными. Все дальнейшие классы эквивалентности состояний для автомата Мура определяются аналогично приведенному для автоматов Мили.



Рассмотрим пример минимизации автомата Мили, заданного таблицами переходов и выходов :


Из таблицы выходов получаем разбиение на 1-классы эквивалентности p1, объединяя в эквивалентные классы Bi состояния с одинаковыми столбцами:

p1 = {B1, B2}; B2 = {a1, a2, a5, a6}; B2 = {a3, a4}

Для получения 2-эквивалентных состояний строим таблицу 1-разбиения (табл.17), заменяя в таблице переходов состояния a1 соответствующими классами эквивалентности B1 или B2.

 

Из полученной таблицы 1-разбиения получаем 2-классы эквивалентности Ci и разбиение p2 = {C1, C2, C3}, где С1 = {a1, a1}, C2 = {a5, a6}, C3 = {a3, a4}. Сравнивая p2 и p1, отмечаем, что эти разбиения отличаются друг от друга. Поэтому аналогично строим таблицу 2-разбиения (табл. 18), опять заменяя в таблице переходов состояния ai соответствующими классами эквивалентности Ci.

 

Из полученной таблицы 2-разбиения получаем 3-классы эквивалентности Di и разбиение p3 ={ D1, D2, D3}, где D1 = {a1, a2}, D2 = {a5, a6}, D3 = {a3, a4}.

Сравнивая p3 и p2, замечаем, что D1 = C1, D2 = C2, D3 = C3, p3 = p3. Следовательно получили разбиение на ¥- эквивалентные классы. Т.к. всего три таких класса, то минимальный автомат будет содержать всего три состояния. Выбираем из каждого класса Di по одному состоянию и получаем множество состояний A' минимального автомата. Пусть, например, A'={a1, a4, a5}. Для получения минимального автомата из первоначальных таблиц переходов и выходов (табл. 16) вычеркиваем столбцы, соответствующие "лишним состояниям" a2, a3, a6. В результате получается минимальный автомат Мили, эквивалентный исходному автомату (табл. 19).

Минимизацией числа внутренних состояний автомата заканчивается этап абстрактного синтеза.




<== предыдущая лекция | следующая лекция ==>
Два автомата с одинаковыми входными и выходными алфавитами называются эквивалентными, если после установки их в начальное состояние их реакции на любое входное слово совпадают. | Элементарные цифровые автоматы с памятью


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.