русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

СПОСОБЫ ОПИСАНИЯ И ЗАДАНИЯ АВТОМАТОВ.


Дата добавления: 2014-11-27; просмотров: 1523; Нарушение авторских прав


Для того, чтобы задать автомат, необходимо описать все компоненты кортежа S=(A, Z, W, d, l, а1 ). Множества А, Z, W описываются и задаются простым перечислением своих элементов. Среди многообразия различных способов заданий функций d и l ( следовательно и всего автомата в целом ) наибольшее распространение получили табличный и графиче­ский.

При табличном способе задания автомат Мили описывается с помощью двух таблиц. Одна из них (таблица переходов ) задает функцию d, т.е. a( t +1) = d( a( t ), z( t )) ( табл.7), вторая (таблица выходов ) - функцию l, т.е. W( t )=l( a( t ), z( t )) ( табл. 8 ).

Каждому столбцу из приведенных таблиц поставлено в соответствие одно состояние из множества А, каждой строке - один входной сигнал из множества Z. На пересечении столбца am и строки zf в табл.7 записывается состояние as, в которое должен перейти автомат из состояния am под действием входного сигнала Zf, т.е. as = d(am, zf). На пересечении столбца am и строки zf в табл.8 записывается выходной сигнал Wg, выдаваемый автоматом в состоянии am при поступ­лении на вход сигнала zf, т.е. Wg = l( am, zf ).

Для приведенных таблиц множества, образующие автомат A={a1, a2, a3,a4}, Z={z1, z2}, W={w1, w2, w3, w4, w5}. Автомат Мили может быть задан одной совмещенной таблицей переходов и выходов (табл.9), в которой каждый элемент as / wg записанный на пересечении столбца am и строки zf, определяется следующим образом:

as=d(am, zf); wf=l(am, zf).

 

Автомат Мура задается одной отмеченной таблицей переходов (табл.10), в которой каждому столбцу приписаны не только состояние am , но еще и выходной сигнал Wg, соответствующий этому состоянию, где Wg=l(am).

 

Для частичных автоматов Мили и Мура в рассмотренных таблицах на месте не определенных состояний и выходных сигналов ставится прочерк. В таких автоматах выходной сигнал на каком-либо переходе всегда не определен, если неопределенным является состояние перехода. Кроме того, выходной сигнал может быть неопределенным и для некоторых существующих переходов.



Для задания С - автоматов также используется табличный метод. В этом случае таблица переходов (табл.11) аналогична таблице переходов автомата Мили, а в таблице выходов каждое состояние отмечено соответствующим выходным сигналом ui выходного алфавита типа 2 (табл.12)

При графическом способе автомат задается в виде ориентированного графа, вершины которого соответствуют состояниям, а дуги - переходам между ними. Дуга, направленная из вершины am, задает переход в автомате из состояния am в состояние as. В начале этой дуги записывается входной сигнал ZfÎZ, вызывающий данный переход as=d(am,zf). Для графа автомата Мили выходной сигнал wgÎW, формируемый на переходе, записывается в конце дуги, а для автомата Мура - рядом с вершиной am, отмеченной состоянием am, в котором он формируется. Если переход в автомате из состояния am в состояние as производится под действием нескольких входных сигналов, то дуге графа, направленной из am в as, приписываются все эти входные и соответствующие выходные сигналы. Граф С- автомата содержит выходные сигналы двух типов и они обозначаются на графе как на графах соответствующих автоматов. Графы автоматов, заданных своими таблицами переходов и выходов
(табл. 7¸12) представлены на рисунках 15,16,17.

 


СВЯЗЬ МЕЖДУ МОДЕЛЯМИ МИЛИ И МУРА.

Рассмотрим некоторый автомат Мили, заданный таблицами переходов и выходов. Таблица переходов а) и выходов б) автомата Мили

 

Подадим на вход автомата, установленного в состояние а1, входное слово x=z1 z2 z2 z1 z2 z2. Так как d(а1, z1) = a2, l(a1, z1) = W2, то под воздействием входного сигнала z1 автомат перейдет в состояние а2 и выдаст на переходе выходной сигнал W2. Затем, находясь в состоянии а2 под воздействием сигнала Z2 перейдет в состояние а1=d(а2, z2) и выдаст сигнал W1=l(a2, z2) и т.д. В табл. 13 приведена последовательность состояний, которые автомат проходит, воспринимая входное слово x, и выходные сигналы, вырабатываемые на этих переходах.

Назовем выходное слово w = l (a1, x) реакцией автомата Мили в состоянии а1 на входное слово x.

В нашем случае w = w2 w1 w2 w2 w1 w2

Как видно, из приведенного примера, в ответ на входное слово длины k автомат Мили выдаст последовательность состояний длины k +1 и выходное слово длины k.

В общем виде поведение автомата Мили, установленного в состояние am, можно описать следующим образом (табл. 14).


 

Аналогично можно описать поведение автомата Мура, находящегося в состоянии a1, при приходе входного слова

x = Zi1, Zi2, . . . , Zik ,учитывая, что W( t ) = l(a( t )):

 

 
 
Входное слово Zi1 Zi2 Zi3 Z
Последовательность cостояний am ai2 = d (am, Zi1 ) ai3 = d (ai2, Zi2 ) ai4 = d(ai3, Zi3 )
Выходное слово wi1 = l (am, Zi1) wi2 = l (ai2, Zi2) wi3 = l (ai3, Zi3) wi4 = l (ai4)

 

 

 


Очевидно, что для автомата Мура выходной сигнал Wi1= l(am) в момент времени i1 не зависит от входного сигнала Zi1 и определяется только состоянием am. Следовательно, сигнал Wi1 никак не связан с входным словом x.

В связи с этим под реакцией автомата Мура, установленного в состояние am, на входное слово x = Zi1, Zi2, . . . , Zik будем понимать выходное слово той же длины w = l(am, x) = Wi2 Wi3 ...Wik+1, сдвинутое по отношению к x на один такт.

Рассмотрим пример. Пусть задан автомат Мура:

Подадим на вход этого автомата ту же последовательность, что и для автомата Мили: x=z1 z2 z2 z1 z2 z2. Последовательность смены состояний и вырабатываемых выходных сигналов представлена в таблице:

 
 
  w1 w2 w3 w4
  a1 a2 a3 a4
z1 a2 a3 a4 a4
z1 a4 a1 a1 a1

 

 

 

Сравнивая реакции автомата Мили (табл. 13) и автомата Мура (табл.15), отмечаем, что эти реакции на одно и то же слово x совпадают. Следовательно автоматы Мили и Мура реализуют одно и то же преобразование слов входного алфавита. Такие автоматы называются эквивалентными. Строгое определение эквивалентности следующее:



<== предыдущая лекция | следующая лекция ==>
Анализ КС методом асинхронного моделирования. | Два автомата с одинаковыми входными и выходными алфавитами называются эквивалентными, если после установки их в начальное состояние их реакции на любое входное слово совпадают.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.