На начальных этапах развития цифровых коммутационных систем из-за высокой стоимости ЗУ основу ЦКП составляли звенья пространственной ступени коммутации. Такие АТС как Sintel, DEX-T имели структуру поля типа S-S при параллельном способе коммутации. Однако, как указывалось в гл.2, пространственные коммутаторы имеют большую вероятность внутренних блокировок, поэтому на практике получили распространения структуры, где пространственные ступени коммутации разделены временными ступенями.
Цифровые поля первого класса объединяют все симметричные КП, состоящие из Т- и S-ступеней, где начальное и конечное звенья являются S- ступенями. Цифровые КП этого класса реально имеют к = 1,2 каскадов 5-иг=1 каскадов Т-, т.е. имеют структуру S-T-S или S-S-T-S-S. Дополнительный каскад пространственной коммутации служит для увеличения пропускной способности КП, но не влияет на принципы установления соединений.
Базовая структура при к = г = 1 позволяет строить цифровые КП малой емкости. Графическое изображение такого трехзвенного поля показано на рис. 3.3. Первый и третий каскады имеют по одному пространственному коммутатору NxM цифровых трактов, а второй каскад содержит Г-ступень, состоящую из М временных коммутаторов. Емкость цифрового КП определяется параметром N S-ступени и количеством каналов п в цифровой линии и рассчитывается как N х п. Так, при использовании ЦСП ИКМ-30 и пространственных коммутаторов 16x16 емкость КП составит 512 канальных интервалов.
Рис. 3.3. Базовая структура цифрового КП первого класса
Алгоритм работы такой схемы следующий. Пусть, например, необходимо осуществить коммутацию КИ1 первой входящей линии с КИ5 четвертой выходящей линии и пусть в КП реализуется алгоритм «произвольная запись - последовательное считывание». Тогда на первом этапе процессорный блок определяет элемент Т-ступени, в которой свободна ячейка памяти, соответствующая КИ5. Пусть таким оказался второй элемент. После этого:
- в соответствующую ячейку УЗУ1 заносится адрес первой входящей линии, соотносимый с временным интервалом КИ1;
- в соответствующую ячейку УЗУ2 заносится адрес второго элемента Г-ступени, соотносимый с временным интервалом КИ5;
- в соответствующую ячейку УЗУЗ заносится адрес четвертой выходящей линии.
Тогда в КИ1 кодовая комбинация из первой входящей линии записывается во второй элемент Г-ступени в ячейку памяти, соответствующую КИ5. Во временной промежуток КИ5 эта кодовая комбинация считывается из памяти и поступает на четвертую выходящую линию.
Алгоритм «произвольная запись - последовательное считывание» может приводить к внутренним блокировкам, поскольку позволяет использовать только ячейки памяти Т-ступени, соответствующие одноименному канальному интервалу. Для реализации алгоритма «произвольная запись - произвольное считывание» необходимо во втором каскаде использовать два УУ, одно для управления записью, другое для управления считыванием.
Ступень пространственной коммутации может выполняться на ПЛМ и на мультиплексорах. Максимально большая многокаскадная матрица 96x96 использовалась в System X (Великобритания). Однако уже на первых этапах реализации таких КП стали применять не базовую структуру, а ее подструктуру (рис. 3.4), поскольку это позволяет значительно увеличить емкость коммутационного поля. Трехзвенные цифровые КП такого вида могут иметь емкость порядка 16 тыс. канальных интервалов.
Рис. 3.4.Подструктура цифрового КП первого класса
Многокоординатные ЦСК с КП первого класса не нашли широкого применения из-за своей сложности и необходимости применения на входе дополнительных элементов памяти, обеспечивающих функцию выравнивая временных каналов входящих линий связи. Поэтому производители были вынуждены искать другие способы увеличения емкости цифровых КП.