русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Кольцевые соединители


Дата добавления: 2014-11-27; просмотров: 1813; Нарушение авторских прав


Кольцевые структуры находят применение в целом ряде областей связи. Прежде всего это кольцевые системы передачи с временным группообразованием, которые по существу имеют конфигурацию последовательно соединенных однонаправленных линий, образую­щих замкнутую цепь или кольцо (рис. 2.21). При этом в каждом узле сети реализуются две основные функции:

1) каждый узел работает как регенератор, чтобы восстановить входящий цифровой сиг­нал и передать его заново;

в узлах сети опознается структура цикла временного группообразования и осуществ­ляется связь по кольцу посредством

 

Рис. 2.21. Структура кольцевой системы передачи

 

2) удаления и ввода цифрового сигнала в определенных канальных интервалах, приписанных к каждому узлу.

Возможность перераспределения канальных интервалов между произвольными парами узлов в кольцевой системе с временным группообразованием означает, что кольцо является распределенной системой передачи и коммутации. Идея одновременности передачи и ком­мутации в кольцевых структурах была распространена на цифровые коммутационные поля.

В такой схеме с помощью единственного канала между любыми двумя узлами может быть установлено дуплексное соединение. В этом смысле кольцевая схема выполняет про­странственно-временное преобразование координат сигнала и может быть рассмотрена как один из вариантов построения S/T-ступени.

На рис. 2.22 показана простейшая реализация ступени пространственно-временной коммутации. Кольцевую структуру для передачи информации образуют передающая Тх и приемная Rx шины вместе с устройством задержки. Передача и прием кодовых слов осуще­ствляются с помощью ключей, включаемых сигналами si, s2, .... sN стробирующего генера­тора. Последний управляется микропроцессором, который рассчитывает необходимые вре­менные канальные интервалы для каждого соединения. Информация автоматически «вра­щается» внутри кольца. Для осуществления коммутации в такой схеме необходимо лишь задержать цифровой сигнал на время, равное половине длительности цикла.



 

Рис. 2.22. Кольцевая S/T-ступень с задержкой на полпериода

 

Например, информация (кодовое слово) из линии 3 должна быть передана в линию 10 и наоборот. Микропроцессор определил свободный 5-й канальный интервал и занял его для линии 3. В целях осуществления коммутации для линии 10 должен быть занят 21-й (5+1/2 цикла = 5 +32/2 = 21) канальный интервал в цикле. Пройдя по кольцу, кодовое слово из ли­нии 3 будет передано в линию 10 включением соответствующего ключа. Теперь необходи­мо передать кодовое слово из линии 10 в линию 3. Для этой цели после считывания линией 10 (или одновременно со считыванием) кодового слова из 21-го канального интервала туда же будет записано кодовое слово, предназначенное для линии 3. Задержка в кольце приве­дет к тому, что эта информация попадет в 5-й (21+16 = 37 = 32 + 5 = 5) канальный интервал следующего цикла. Таким образом, для коммутации линий 3 к 10 требуются 5-й и 27-й ка­нальные интервалы циклов.

Отметим, что такое построение S/T-ступени характеризуется жесткой зависимостью между выбираемыми для передачи информации канальными интервалами в цикле.

Отсутствием такой жесткой зависимости отличается S/T-ступень, упрощенная схема ко­торой показана на рис. 2.23.

 

 

Рис. 2.23. Кольцевая S/T-ступень

MUX - мультиплексор, DMUX - демультиплексор, s - стробирующие импульсы

Использование Т-ступеней в коммутационных модулях, цен­трализованное управление Т-ступенями и ключами позволяет записывать и считывать ин­формацию в любом временном канальном интервале цикла.

Кольцевые S/T-ступени рассмотренного типа обладают двумя существенными не­достатками:

1) в случае разрыва кольца вся система коммутации выходит из строя, поэтому необхо­димо дублировать кольцо;

2)увеличение скорости передачи информации по кольцу прямо пропорционально числу временных канальных интервалов коммутационного модуля и в кольце (очевидно, что ин­формация, передаваемая по кольцу, должна делать оборот за 125 мкс, поэтому увеличение числа канальных интервалов в цикле приведет к росту скорости передачи). При Т-ступени 512 канальных интервалов и использовании мультиплексоров на 16 входящих ИКМ линий емкость станции на таком кольце составит около 2000 абонентов.

Примером реализации S/T-ступени на основе кольцевой схемы может служить цифро­вой коммутационный элемент (ЦКЭ), используемый при построении цифровых КП станций ITT 1240 и Alcatel 1000 S12. Например, ЦКЭ станции ITT 1240 представляет собой кольце­вую 39-линейную параллельную шину с 16 коммутационными портами (рис. 2.24).

 

 

 

Рис. 2.24. Структурная схема ЦКЭ

 

В каждый коммутационный порт включаются входящая и исходящая ИКМ линии, т.е. порт образует тракт двусторонней передачи ИКМ сигналов. Формат ИКМ линии содержит 32 канальных интервала с кодовым словом 16 бит и скоростью передачи 4096 Кбит/с.

Отметим характерные особенности ЦКЭ:

1) управляющая информация передается совместно с речевым сигналом (поэтому кодо­вое слово внутри ступени состоит из 16 бит: 8 бит речевого сигнала + 8 бит управления);

2) шина ЦКЭ синхронизирована по частоте, но не по фазе, что исключает ограничение на длину линии ИКМ. Однако на входе ЦКЭ синхронизация осуществляется по частоте и по фазе. Каждый ЦКЭ выбирает одну из двух стандартных частот синхрогенераторов А или В и генерирует местные тактовые импульсы для работы внутренней шины и исходящих ИКМ линий;

3) отсутствует общий механизм или процессор для управления ЦКЭ. ЦКЭ управляется коммутационными портами, работающими совместно по кольцевой шине с временным раз­делением каналов. Порты устанавливают соединение независимо друг от друга, подобно тому, как выполняется соединение в декадно-шаговых АТС и получают управляющее слово от управляющего устройства оконечного модуля (ОМ) (на рисунке не показан). Во входы ОМ включаются терминалы, на выходе - ИКМ-30 с 16-битовым словом. При этом ОМ функцию коммутации не осуществляет.

В заключение отметим, что ступени пространственно-временной коммутации всех ти­пов могут использоваться как цифровое коммутационное поле АТС небольшой емкости (до 5-8 тыс. абонентов) или как одна из ступеней многозвенных цифровых коммутационных полей.




<== предыдущая лекция | следующая лекция ==>
Использование мультиплексоров и демультиплексоров | Классификация ЦКП


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.976 сек.