русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

D-триггеры. Т-триггеры.


Дата добавления: 2014-11-27; просмотров: 3134; Нарушение авторских прав


D-триггер (от англ. delay) запоминает входную информацию при поступлении синхроимпульса. Рассуждая чисто теоретически, D-триггер можно образовать из любых RS- или JK-триггеров, если на их входы одновременно подавать взаимно инверсные сигналы.

Хранение информации в D-триггерах обеспечивается за счет синхронизации, поэтому все реальные D-триггеры имеют два входа: информационный D и синхронизации С (рис. 23.14). В этом триггере сигнал на входе по сигналу синхронизации записывается и передается на выход.

Так как информация на выходе остается неизменной до прихода очередного импульса синхронизации, D-триггер называют также триггером с запоминанием информации или триггером-защелкой.

D-триггер также может быть снабжен дополнительными входами асинхронной установки. Так, микросхема К561ТМ2 (рис. 23.16) представляет собой два триггера с динамическим управлением по входам синхронизации, имеющие входы асинхронной установки R и S .

При подаче на вход S логической 0 и на вход R – логической 1 триггер устанавливается в единичное состояние (Q = 1). При подаче на вход S логической 1 и на вход R – логического 0 триггер устанавливается в нулевое состояние. При S = R = 1 триггер работает как D-триггер, повторяя на выходе Q сигнал на входе D при воздействии положительного фронта на входе синхронизации.

23.4. Т-триггеры

Т-триггер изменяет свое логическое состояние на противоположное по каждому активному сигналу на информационном входе Т. Т-триггер часто называют счетным триггером. Условное графическое обозначение двухступенчатого Т-триггера приведено на рис. 23.17.

Т-триггер может строиться как на JK, так и на D-триггерах. JK-триггер переходит в инверсное состояние каждый раз при одновременной подаче на входы J и K логической 1. Это свойство позволяет создать на базе JK-триггера Т-триггер, объединяя входы J и К.



Наличие в D-триггере динамического С входа позволяет получить на его основе T-триггер

При этом вход D соединяется с инверсным выходом, а на вход С подаются счетные импульсы. В результате триггер при каждом счетном импульсе запоминает значение , то есть будет переключаться в противоположное состояние.

Работа триггера осуществляется следующим образом (D-триггер ТМ2): хранение информации осуществляется при подаче на вход С как логического 0, так и логической 1. На выход передается и запоминается на период повторения синхроимпульсов информация, имеющаяся на входе D перед фронтом импульса на входе С. Изменение информации на выходе может происходить только во время действия фронта импульса на входе С.

 

15,,,,,,,Счетчики.

Счетчик – такое устройство, на выходах которого получается двоичный (двоично-десятичный) код, определяемый числом поступивших импульсов. Счетчики строятся на Т-триггерах.

Основной параметр счетчика – модуль счета – максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).

Счетчики классифицируют:

1. По модулю счета:

- двоично-десятичные;

- двоичные;

- с произвольным постоянным модулем счета;

- с переменным модулем счета;

2. По направлению счета:

- суммирующие;

- вычитающие;

- реверсивные;

3. По способу формирования внутренних связей:

- с последовательным переносом;

- с параллельным переносом;

- с комбинированным переносом;

- кольцевые.

В суммирующем счетчике состояние счетчика (двоичный код на его выходах) с каждым импульсом увеличивается на единицу. Принцип построения и таблица истинности суммирующего счетчика приведены на рис. 24.1.

 

Через КСЧ обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого – старшему разряду. В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения. Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.

В вычитающем счетчике состояние счетчика (двоичный код на его выходах) с каждым импульсом уменьшается на единицу. Принцип построения и таблица истинности вычитающего счетчика приведены на рис. 24.3. В чистом виде Т-триггеров в интегральном исполнении нет. Т-триггеры получаются путем преобразования D и JK-триггеров.

Если количество триггеров в счетчике ограничено и равно n, а число поступающих импульсов не ограничено, то двоичный код, формируемый на выходах суммирующего счетчика, будет меняться от минимального значения (0) до максимального (2n – 1), повторяясь периодически через 2n импульсов.

При использовании вычитающего счетчика его состояние в пределах цикла будет уменьшаться от (2n–1) до нуля. Для однозначного фиксирования числа поступивших импульсов количество триггеров в счетчике должно быть равно:

, (24.1)

 

где – количество триггеров в счетчике, – максимальное число импульсов, поступающих на вход счетчика.

Рассмотрим счетчики К155ИЕ2 и К155ИЕ5. Условные графические обозначения счетчиков приведены на рис. 24.4.

 

Счетчики построены следующим образом: в каждой ИС первый из триггеров имеет отдельный вход С1 и прямой выход, три остальных триггера соединены между собой так, что образуют делитель на 8 в ИС типа ИЕ5.

ИС имеют по два входа R0 установки в 0, объединенные по схеме "И". Сброс (установка в 0) триггеров производится при подаче уровней логической единицы на оба входа R0. ИС типа ИЕ2 имеет, кроме того, входы установки триггеров счетчика в состояние 9. При воздействии на оба эти входа логической 1 первый и четвертый триггеры переходят в единичное состояние, а остальные – в нулевое. Входы R0 и R9 изменяют состояние триггеров счетчика независимо от того, действует синхроимпульс или нет.

Наличие входов установки, объединенных по схеме "И", позволяет строить делители частоты с различными коэффициентами деления в пределах от 2 до 16 без использования дополнительных логических элементов.

При разработке измерительной аппаратуры, а также во многих других случаях желательно обеспечивать отображение информации в десятичной системе счисления. В этом случае наиболее удобно счетчики типа ИЕ4, ИЕ5



<== предыдущая лекция | следующая лекция ==>
JK-триггеры | Реверсивные счетчики.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.149 сек.