Фильтрующие элементы используются в блоках питания для фильтрации сигналов, в качестве корректирующих звеньев в системах управления и т.п. Фильтры делятся на два больших класса - пассивные и активные, причём основным отличием активного фильтра является наличие усилительного элемента - обычно это ОУ. Если в фильтре содержится один реактивный элемент (ёмкость или индуктивность), то такой фильтр называется фильтром первого порядка, если два - то второго порядка и т.д.
Наиболее распространённым пассивным фильтром первого порядка является интегрирующая RC- цепь, входящая в состав рассмотренного выше интегратора, который может рассматриваться как активный низкочастотный фильтр первого порядка. Этот же фильтр в технике электропитания называется Г-образным, в аудиотехнике - фильтром нижних частот (ФНЧ), а в технике управления - корректирующим или интегрирующим звеном. Основными характеристиками фильтра являются АЧХ и ФЧХ. Например, для интегрирующей цепи на рис.16 они описываются выражениями:
Следует отметить, что фильтры на базе RC-цепей обладают своеобразной дуальностью. Если на рис.16 поменять местами элементы R и C, то получим фильтр верхних частот (ФВЧ).
Рис. 16. Схема пассивного ФНЧ первого порядка
Классической схемой фильтра второго порядка является последовательная RLC-цепь (рис. 17).
Рис.17. Фильтр второго порядка
RLC-цепь обладает явными резонансными свойствами, её АЧХ и ФЧХ описываются выражениями:
где - коэффициент затухания, его обратная величина называется добротностью Q=1/d , часто определяемой как Q=F/ F , где F - ширина полосы пропускания по уровню 0,707(-3дБ); - резонансная частота.
При практической реализации RLC-фильтров (особенно низкочастотных) наибольшие трудности возникают с изготовлением катушек индуктивности, их экранированием, а при больших значениях индуктивности - с проблемой массы и геометрических размеров. С появлением ОУ эти проблемы решены с использованием активных RC-фильтров. Появились так называемые безиндуктивные частотные фильтры. В качестве примера на рис.18 приведена схема активного ФНЧ второго порядка на ОУ.
Рис. 18. Активный RC- фильтр
Из полосовых фильтров наибольшее распространение получили фильтры, АЧХ которых описывается полиномами Баттерворта, Чебышева и Бесселя; для расчёта таких фильтров применяются специальные таблицы.
Фильтры Баттерворта. Эти фильтры характеризуются максимально плоской АЧХ в полосе пропускания. Управление величиной выходного напряжения и перестройка по частоте в широком диапазоне осуществляются в этих фильтрах проще, чем в других, поскольку при каскадном соединении все секции настраиваются на одну и ту же частоту.
Фильтры Чебышева. Эти фильтры обеспечивают наивысшую крутизну АЧХ в переходной полосе частот. Однако при этом АЧХ в полосе пропускания приобретает колебательный характер. Чем больше неравномерность в полосе пропускания, тем выше крутизна затухания в переходной полосе частот.
Фильтры Бесселя. Фильтры Бесселя обладают максимально плоской характеристикой группового времени запаздывания (производная от ФЧХ по частоте) и линейностью ФЧХ по полосе пропускания. Однако крутизна затухания фильтра невелика.
В каталоге схем программы EWB имеется пример низкочастотного полосового фильтра (файл CIRCUITS /speech.ewb) с полосой пропускания от 300 Гц до 3 кГц. Фильтр представляет собой два последовательно включённых фильтра четвёртого порядка на ОУ (ФНЧ и ФВЧ).В каталоге имеются также схемы активных избирательных ФНЧ на базе Т-образного моста (bass-amp.ewb) и пропорционально интегрирующий фильтр (riaa.ewb).