русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Демодуляция сигналов


Дата добавления: 2014-11-27; просмотров: 6425; Нарушение авторских прав


 

Демодуляция АМ-сигналов может выполняться несколькими способами. Самый простейший способ – двухполупериодное детектирование (вычисление модуля сигнала) с последующим сглаживанием полученных однополярных импульсов несущей фильтром низких частот.

На рис. 12 приведен пример изменения однотонального амплитудно-модулированного сигнала при детектировании. Параметры представленного сигнала: несущая частота 30 Гц, частота модуляции 3 Гц, коэффициент модуляции М=1.

Как видно на рисунке, при детектировании модулированного сигнала, он становится однополярным, переходит на основную несущую частоту 2wo и уменьшается по энергии почти в 5 раз. Основная часть энергии (более 4/5) трансформируется в область низких частот и распределяется между постоянной составляющей и выделенной гармоникой сигнала модуляции. Между постоянной составляющей и выделенной гармоникой энергия распределяется в зависимости от значения коэффициента модуляции М. При М=1 энергии равны, при М=0 (в отсутствие сигнала модуляции) вся энергия переходит в энергию постоянной составляющей.

Кроме этих составляющих появляются также 2-я, 3-я и более высокие гармоники детектированного модулированного сигнала. Энергия второй гармоники не превышает 2%, а остальных и вовсе незначительна.

Рис. 12.Однотональный модулированный сигнал и его изменение при детектировании

 

Демодуляторы сигнала выделяют после детектирования только низкочастотный информационный сигнал и подавляют все остальные частоты, включая постоянную составляющую. Очевидно также, что в случае перемодуляции сигнала исходный информационный сигнал будет восстанавливаться с ошибкой.

Другой распространенный метод – синхронное детектирование. При синхронном детектировании модулированный сигнал умножается на опорное колебание с частотой несущего колебания. Без учета фазовых углов колебаний:



 

y(t) = U(t) cos(wot)cos(wot)=½U(t)+½U(t)cos(2wot).

 

Как следует из этого выражения, сигнал разделяется на два слагаемых, первое из которых повторяет исходный модулирующий сигнал, а второе повторяет модулированный сигнал на удвоенной несущей частоте 2wо. На рис. 13 приведено визуальное сопоставление двухполупериодного и синхронного детектирования, которое наглядно показывает практически полное подобие процессов. Но форма новой несущей при синхронном детектировании является чистой гармоникой, в отличие от двухполупериодного детектирования, где новая несущая волна явно содержит дополнительные гармоники более высоких частот.

Физический смысл амплитуды сигналов после демодуляции подобен спектру двухполупериодного детектирования, но однозначно соотносится со спектром входного модулированного сигнала: амплитуды гармоник модулированного сигнала на частоте 2wо в два раза меньше амплитуд входного сигнала, постоянная составляющая равна амплитуде несущей частоты wo и не зависит от глубины модуляции, амплитуда информационного демодулированного сигнала в 2 раза меньше амплитуды исходного модулирующего сигнала. Замечательной особенностью синхронного детектирования является полная независимость от глубины модуляции, т. е. коэффициент модуляции сигнала может быть больше 1.

При сдвиге фазы опорного колебания на Dw относительно несущей частоты, выходной сигнал демодулятора оказывается умноженным на косинус фазовой ошибки:

 

y(t) = U(t) cos(wot) cos(wot – Dj) = ½ U(t) cos(–Dj) + ½ U(t) cos(2wotDj).

 

Амплитуда сигнала снижается, а при Dw=p/2 становится равной нулю.

При сдвиге частоты между несущим и опорным колебаниями сигнал демодулятора оказывается умноженным на гармоническое колебание с разностной частотой:

 

y(t) = U(t) cos(wot) cos(wot–Dw) = ½ U(t) cos(–Dwt) + ½ U(t) cos((2woDw)t),

 

при этом выходной сигнал демодулятора начинает пульсировать (beat – биения) с частотой биений Dw.

 

 

  Рис. 13. Детектирование

 

Для частотной и фазовой синхронизации между несущим и опорным колебаниями в составе демодуляторов обычно используются следящие системы фазовой автоподстройки опорной частоты. Демодуляция сигналов с угловой модуляцией много сложнее демодуляции АМ сигналов.



<== предыдущая лекция | следующая лекция ==>
Амплитудная модуляция | С различными видами модуляции


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.639 сек.