При амплитудной модуляции (АМ) амплитуда сигнала изменяется прямо пропорционально низкочастотному информационному сигналу s(t)
и выражается формулой:
Um(t)=Umo+kAMs(t).
(1)
Здесь Umo – начальное значение амплитуды несущей, kAM – коэффициент, зависящий от конструкции амплитудного модулятора. Umo и kAM должны быть такими, чтобы всегда Um(t)≥0. В противном случае возникает перемодуляция.
Учитывая (1), сигнал с АМ записывается следующим образом:
YAM(t)=[ Umo+ kAMs(t)]cos(ωot+φo).
(2)
Для анализа амплитудной модуляции используем простейшее сообщение – гармонический сигнал s(t)=Smcos(Ωt+Ψ). Формула (2) в этом случае примет вид:
YAM(t)= Umo[1+m cos(Ωt+Ψ)] cos(ωot+φo),
(3)
где m=kAMSm/Umo – коэффициент амплитудной модуляции. На рис. 5 показаны модулированные сигналы с коэффициентами АМ, равными m=0,5 и m=1 соответственно. При стопроцентной амплитудной модуляции (m=1) имеют место максимальные изменения амплитуды модулированного сигнала: амплитуда изменяется от нуля до удвоенного значения.
Используя тригонометрическую формулу для произведения косинусов, выражение (3) можно представить в виде формулы (4). Все три слагаемые в правой части формулы (4) – гармонические колебания. Первое слагаемое представляет собой исходное немодулированное колебание (несущую). Второе и третье слагаемые называют, соответственно, верхней и нижней боковыми составляющими.
(4)
Обе боковые полосы несут полную информацию о низкочастотном модулирующем сигнале. Поэтому в технике связи часто используются сигналы с одной боковой полосой. Нужная боковая полоса выделяется с помощью фильтра. Вторая боковая полоса (включая иногда и несущую) подавляется. Сигналы с одной боковой полосой занимают меньшую полосу частот и при прочих равных условиях требуют меньшей мощности передатчика.
Рис. 5. Модулированные сигналы
До настоящего времени в радиоэлектронике не разработано эффективных методов непосредственного перемножения двух или нескольких аналоговых сигналов. Поэтому при осуществлении амплитудной модуляции применяются косвенные методы перемножения с помощью нелинейных или параметрических цепей.
Одним из вариантов построения амплитудных модуляторов являются АМ на основе резонансных усилителей мощности, использующих эффект преобразования суммы модулирующего и несущего колебаний, подаваемых на безынерционный нелинейный элемент. Простейший АМ создают на основе нелинейного резонансного усилителя (рис. 6), включив на входе последовательно источники постоянного напряжения смещения Uo, модулирующего сигнала е(t) и генератор несущего колебания Un(t), и настроив колебательный контур на несущую частоту ωo.
Для получения однотонального АМ-сигнала к входу модулятора необходимо приложить напряжение
.
(5)
Рис. 6. Амплитудный модулятор на основе резонансного усилителя
Анализировать работу модулятора можно с помощью диаграмм токов и напряжений (рис. 7). Предположим, что сквозная характеристика транзистора (зависимость тока коллектора Iк от напряжения база – эмиттер Uбэ) аппроксимирована двумя отрезками прямых линий. Вследствие перемещения рабочей точки относительно напряжения смещения Uo по закону модулирующего сигнала е(t) происходит изменение угла отсечки тока в кривой несущего колебания. В результате импульсы коллекторного тока iк транзистора, отражающие изменение несущего колебания, оказываются промодулированными по амплитуде.
В спектре импульсов коллекторного тока транзистора содержится множество гармонических составляющих с частотами ω0 и Ω, а также с кратными и комбинационными (суммарными и разностными составляю щими гармоник ω0 и Ω) частотами. Резонансный контур должен иметь полосу пропускания ΔωАМ = 2Ω для выделения из спектра импульсов коллекторного тока только гармоники с частотами ω0 – Ω, ω0 и ω0 + Ω.
Рис. 7. Диаграммы токов и напряжений
2.2. Угловая модуляция
При угловой модуляции (angle modulation) в несущем гармоническом колебании u(t) = Umcos(wt+j) значение амплитуды колебаний Um остается постоянным, а информация s(t) переносится либо на частоту w, либо на фазовый угол j. И в том, и в другом случае текущее значение фазового угла гармонического колебания u(t) определяет аргумент y(t) = wt+j, который называют полной фазой колебания.
Фазовая модуляция(ФМ, phase modulation – PM).При фазовой модуляции значение фазового угла постоянной несущей частоты колебаний wo пропорционально амплитуде модулирующего сигнала s(t). Соответственно, уравнение ФМ – сигнала определяется выражением:
u(t) = Um cos[wot + k×s(t)],
(6)
где k – коэффициент пропорциональности. Пример однотонального ФМ–сигнала приведен на рис. 8.
При s(t) = 0, ФМ–сигнал является простым гармоническим колебанием и показан на рисунке функцией uo(t). С увеличением значений s(t) полная фаза колебаний y(t)=wot+k×s(t) нарастает во времени быстрее и опережает линейное нарастание wot. Соответственно, при уменьшении значений s(t) скорость роста полной фазы во времени спадает. В моменты экстремальных значений s(t) абсолютное значение фазового сдвига Dy между ФМ – сигналом и значением wot немодулированного колебания также является максимальным и носит название девиации фазы (вверх Djв = k×smax(t) или вниз Djн = k×smin(t) с учетом знака экстремальных значений модулирующего сигнала).
Для колебаний с угловой модуляцией применяется также понятие мгновенной частоты (instantaneous frequency), под которой понимают производную от полной фазы по времени:
ω(t) = y(t)/dt = ωo + k ds(t)/dt.
(7)
Полная фаза колебаний в произвольный момент времени может быть
определена интегрированием мгновенной частоты:
y(t) = ω(t) dt, или y(t) = ω(t) dt +jo.
На (рис. 9) приведена схема фазового модулятора (аналогичная схема используется в радиостанции «Кама – Р»). Напряжение высокой частоты через автотрансформаторную связь поступает на первичный контур – катушку L1 и варикап V1. Далее, через конденсаторы связи С1, С2 напряжение подается на второй контур – L2, V2 и третий – L3, V3. Варикапы выполняют роль контурных конденсаторов.
При отсутствии модулирующего напряжения с микрофона (U=0) на варикапах действует постоянное напряжение смещения, которое устанавливается потенциометрами R10–R12. Напряжение смещения подбирается ток, чтобы каждый контур был настроен на частоту входного напряжения . Поэтому высокочастотное напряжение проходит все 3 контура, не получая дополнительного сдвига по фазе.
Рис 9. Схема фазового модулятора
При появлении на выводах 1, 2 звукового напряжения U оно через разделительные конденсаторы С6–С8 подается на варикапы. Напряжение смещения суммируется с напряжением модуляции и емкости варикапов изменяются в такт со звуковым напряжением. Вследствие меняющейся расстройки колебательных контуров выходное напряжение оказывается промодулированным по фазе. Количество контуров определяет глубину модуляции.
Конденсаторы С3–С5 имеют малое сопротивление токам высокой частоты (короткое замыкание) и относительно большое для токов звуковой частоты. Благодаря этим конденсаторам и резисторам R4–R6 осуществляется развязка между высокочастотной и низкочастотной частями схемы.
При передаче сообщений телеграфом излучение высокочастотной энергии периодически прекращается и возобновляется. Этот процесс называется манипуляцией.
Частотная модуляция (ЧМ, frequency modulation – FM) характеризуется линейной связью модулирующего сигнала с мгновенной частотой колебаний, при которой мгновенная частота колебаний образуется сложением частоты высокочастотного несущего колебания wo со значением амплитуды модулирующего сигнала с определенным коэффициентом пропорциональности:
w(t) = wo + k×s(t).
Соответственно, полная фаза колебаний:
y(t) = ωo(t) + k s(t) dt, или y(t) = ωo(t) + k s(t) dt +jo.
Уравнение ЧМ – сигнала:
u(t) = Um cos(ωot+k s(t) dt +jo).
(8)
Аналогично ФМ, для характеристики глубины частотной модуляции используются понятия девиации частоты вверх Dwв = k×smax(t), и вниз
Dwн = k×smin(t).
Частотная и фазовая модуляция взаимосвязаны. Если изменяется начальная фаза колебания, изменяется и мгновенная частота, и наоборот. По этой причине их и объединяют под общим названием угловой модуляции. По форме колебаний с угловой модуляцией невозможно определить, к какому виду модуляции относится данное колебание, к ФМ или ЧМ, а при достаточно гладких функциях s(t) формы сигналов ФМ и ЧМ вообще практически не отличаются.
Схема частотного модулятора представлена на рис. 10.
При рассмотрении схемы следует сказать о том, что в отличие от амплитудной модуляции частотная модуляция осуществляется непосредственно в задающем генераторе передатчика. На рис. 10 показан упрощенный вариант схемы частотной модуляции с применением варикапа.
Варикап представляет собой специальной конструкции полупроводниковый диод. Если диод включить в обратном направлении, то его закрытый p–n переход может рассматриваться как конденсатор. Регулируя напряжение запирания, можно изменять емкость этого «конденсатора». На рисунке транзистор VT2 с колебательным контуром Ск, Lk и катушкой связи Lсв образуют генератор синусоидальных колебаний с самовозбуждением.
Рис. 10. Схема частотного модулятора
Так как параллельно контуру с конденсатором Ск через Ссв подключается емкость варикапа, то частота генерируемых колебаний в режиме «молчания» будет определяться следующим образом:
(9)
Здесь – емкость варикапа в исходном состоянии при отсутствии звукового напряжения .
Начальная емкость определяется начальным запирающим напряжением, которое равно напряжению на Rk при протекании тока покоя .
Модулятором в схеме является усилитель напряжения звуковой частоты на транзисторе VT1 с коллекторной нагрузкой и варикапом.
При воздействии на микрофон с коллекторной нагрузки Rk снимается звуковое напряжение , которое через высокочастотный дроссель L1 подается на варикап и изменяет его емкость и следовательно частоту генерируемых высокочастотных колебаний.
Конденсатором Ссb можно регулировать девиацию частоты генерируемых колебаний. Высокочастотный дроссель позволяет развязать высокочастотную часть схемы от низкочастотной, иными словами, исключить
попадание высокочастотного напряжения на коллектор транзистора усилителя низкой частоты.
2.3. Импульсная модуляция
Импульсная модуляция (ИМ) не является в действительности каким-то особым типом модуляции. Далее различают импульсную амплитудную и импульсную частотную модуляции. Здесь учитывают то, каким образом информация представлена — с помощью импульса или ряда импульсов. Можно рассматривать в качестве модулируемой величины амплитуду импульса или его ширину, или его положение в последовательности импульсов и т. д. Следовательно, существует большое разнообразие методов импульсной модуляции. Все они используют в качестве формы передачи или AM, или ЧМ.
Импульсная модуляция может быть использована для передачи как цифровых, так и аналоговых форм сигнала. Когда речь идет о цифровых сигналах, мы имеем дело с логическими уровнями (высоким и низким) и можем модулировать несущую (с помощью AM или ЧМ) рядом импульсов, которые представляют цифровое значение.
При использовании импульсных методов для передачи аналоговых сигналов необходимо сначала преобразовать аналоговые данные в импульсную форму. Это преобразование также относится к модуляции, так как аналоговые данные используются для модулирования (изменения) последовательности импульсов или импульсной поднесущей. На рис. 11а показана модуляция синусоидальным сигналом последовательности импульсов.
Амплитуда каждого импульса в модулированной последовательности зависит от мгновенного значения аналогового сигнала. Синусоидальный сигнал можетбыть восстановлен из последовательности модулированных импульсов путем простой фильтрации. На рис. 11б графически показан процесс восстановления первоначального сигнала путем соединения вершин импульсов прямыми линиями. Однако восстановленная на рис. 11б форма колебаний не является хорошим воспроизведением первоначального сигнала из-за того, что число импульсов на период аналогового сигнала невелико. При использовании большего числа импульсов, т. е. при большей частоте следования импульсов по сравнению с частотой модулирующего сигнала, может быть достигнуто более качественное воспроизведение. Этот процесс амплитудно-импульсной модуляции (АИМ), относящийся к модуляции поднесущей последовательности импульсов, может быть выполнен путем выборки аналогового сигнала через постоянные интервалы времени импульсами выборки с фиксированной длительностью.
Импульсы выборки — это импульсы, амплитуды которых равны величине первоначального аналогового сигнала в момент выборки. Частота выборки (число импульсов в секунду) должна быть, по крайней мере, в два раза большей, чем самая высокая частота аналогового сигнала. Для лучшей воспроизводимости частота выборки обычно устанавливается в 5 раз большей самой высокой частоты модуляции.
Рис. 11. Форма сигналов амплитудно-импульсной модуляции:
а — форма модулированного сигнала;
б — воспроизведенная форма сигнала при низкой частоте следования импульсов;
в — воспроизведенная форма сигнала при высокой частоте следования импульсов
(Т1,Т2 — периоды последовательности импульсов)
АИМ является только одним типом импульсной модуляции. Кроме него существуют:
ШИМ – широтно-импульсная модуляция (модуляция импульсов по длительности);
ЧИМ – частотно-импульсная модуляция;
КИМ – кодово-импульсная модуляция.
Широтно-импульсная модуляция преобразует уровни выборок напряжений в серии импульсов, длительность которых прямо пропорциональна амплитуде напряжений выборок. Отметим, что амплитуда этих импульсов постоянна; в соответствии с модулирующим сигналом изменяется лишь длительность импульсов. Интервал выборки (интервал между импульсами) также фиксирован.
Частотно-импульсная модуляция преобразует уровни выборок напряжений в последовательность импульсов, мгновенная частота которых, или частота повторения, непосредственно связана с величиной напряжений выборок. И здесь амплитуда всех импульсов одинакова, изменяется только их частота. По существу это аналогично обычной частотной модуляции, лишь несущая имеет несинусоидальную форму, как в случае обычной ЧМ; она состоит из последовательности импульсов.