русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вейвлеты


Дата добавления: 2014-11-27; просмотров: 882; Нарушение авторских прав


 

В математической теории сигналов принято считать, что сигналы определены как векторы в некотором пространстве V. Бесконечно размерное пространство, часто используемое в теории вейвлетов, называется гильбертовым пространством L2[R]. Вейвлет функции Y, принадлежащие L2[R] должны иметь нулевое среднее значение и затухать на бесконечности. Ввиду ограниченности действия вейвлетов, они могут покрывать всю вещественную ось, если обладают возможностью сдвига по этой оси, а также свойством масштабирования, которое можно уподобить изменению частоты гармоник в рядах Фурье. Обладая этими свойствами, вейвлеты позволяют представить локальные особенности сигналов [1,3,12,13,16,19].

На основании понятий о векторном пространстве общим подходом к анализу сигналов s(t) стало их представление в виде взвешенной суммы простых составляющих – базисных функций Yk(t), умноженных на коэффициенты Ck:

 

(7.4)

 

Термин вейвлет, введён впервые Морле, в переводе с английского означает «короткая волна» или «всплеск». Грубо вейвлеты можно представить как некоторые волновые функции, способные осуществлять преобразование Фурье не по всей временной оси, а локально по месту своего расположения. Базисными функциями вейвлетов могут быть различные функции, в том числе, напоминающие модулированные импульсами синусоиды, функции со скачками уровня и т.д. Это обеспечивает лёгкое представление сигнала со скачками и разрывами.

Вейвлеты характеризуются своими временными и частотными образами. Временной образ представляет собой некую функцию Y(t) времени, а частотный образ определяется её Фурье-образом: .

Таким образом, с помощью вейвлетов сигнал представляется совокупностью волновых пакетов, образованных на основе некоторой исходной базовой функции Y0(t). Эта совокупность, разная в различных частях временного интервала определения сигнала и корректируемая множителями, и представляет с той или иной степенью детализации. Такой подход называют вейвлет анализом сигналов.



Число используемых вейвлетов, при разложении сигнала, задаёт уровень декомпозиции сигнала. За нулевой уровень декомпозиции часто принимают сам сигнал, а последующие уровни декомпозиции образуют ниспадающее вейвлет дерево.

Одна из основополагающих идей вейвлет-представления вейвлет представлении сигнала заключается в разбивке приближения сигнала на две составляющих: грубую (аппроксимирующую) и приближенную (детализирующую), с последующим их уточнением итерационным методом. Каждый шаг такого уточнения соответствует определённому уровню декомпозиции и реставрации сигнала.

Как и преобразование Фурье, вейвлет преобразования можно применять как к непрерывным сигналам – непрерывные вейвлет преобразования, так и к цифровым сигналам – дискретные вейвлет преобразования.

 



<== предыдущая лекция | следующая лекция ==>
Понятие о Wavelet-преобразованиях. Преобразование Хаара | Непрерывные вейвлет преобразования


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.