русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

ЦИФРОВАЯ ШКАЛА


Дата добавления: 2014-11-27; просмотров: 3077; Нарушение авторских прав


 

Описываемое устройство может использоваться с трансивером или радиоприемником, частота которого определяется частотами одного, двух или трех генераторов.

Принцип работы шкалы в трансивере с тремя генераторами состоит в по­очередном счете импульсов с частотой диапазонного F1, плавного F2 и опор­ного F3 генераторов в реверсивном счетчике за строго определенные периоды времени.

Рассмотрим в качестве примера широко распространенный вариант вы­бора частот гетеродинов, использованный в трансивере UW3DI: частота F1 в зависимости от диапазона лежит в пределах от 8 до 23 МГц, частота F2 изменяется в диапазоне 5,5 — 6,0 МГц, частота F3 составляет 500 кГц. При этом выходная частота составляет F=F1 + F2+F3 для диапазонов 28, 21 и 14 МГц и F = F1F2F3 для диапазонов 7 и 3,5 МГц.

Рис. 75. Схема блока управления цифровой шкалы

Схема цифровой шкалы приведена на рис. 75 и 76. Измеряемые часто­ты поступают на входы Fl, F2, F3 и формируются в усилителях-ограничите­лях на транзисторах VT8, VT9, VT10. Их схемы идентичны, за исключением того, что емкость конденсатора, шунтирующего входной резистор в каналах F2 и F3, увеличена до 75 пФ. Частота F1 может превышать допустимую для ин­тегральных микросхем К155ИЕ6, использованных в реверсивном счетчике, па-этому она предварительно делится на два триггером DD5.2 серии К131.

Рис. 76. Кварцевый reнератор и счетчик цифро­вой шкалы

 

Сигнал эталонной частоты 1 МГц поступает на декадный делитель ча­стоты DD1DD4 (см. рис. 75), с его выхода сигнал с частотой 100 Гц по­дается на вход формирователя временных интервалов, выполненного на ИС DD5.1, DD6, DD9, DD11 и элементах DD10.3, DD10.4. Работа формирователя иллюстрируется рис. 77. Импульсы с частотой 20 Гц поступают с выходов триггеров DD5.1, DD6.1, DD6.2 (см. рис. 75) на входы элементов DD9.1, DD9.2 и DD9.3, выполняющих функции дешифраторов и клапанов. Элемент DD9.1 пропускает один из каждых пяти импульсов последовательности ТИ2 с выхода 11 DD4. Эти импульсы устанавливают исходное состояние ревер­сивного счетчика. Затем импульс В с выхода 6 DD6.1 длительностью 20 мс, поступая на вход R триггера DD5.2, разрешает деление частоты F1 в этом триггере и частота F1/2 проходит через элементы DD10.3 и DD10.4 на вход сложения реверсивного счетчика.



Рис. 77. Диаграмма работы формирователя временных интервалов

Рис. 78. Диаграмма работы устройства динамической индикации

 

Элемент DD9.2 разрешает прохождение на реверсивный счетчик в тече» ние 10 мс импульсов с частотой F2, элемент DD9.2 — импульсов с частотоШ F3. Эти импульсы поступают на вход сложения или вычитания реверсивного счетчика в зависимости от логического уровня сигнала, поступающего на вход Управление шкалы. Если на входе Управление логический 0, то включен логи­ческий элемент DD11.3 и импульсы частот F2 и F3 проходят на вход сложе­ния (диапазоны 14, 21, 28 МГц). Если на входе Управление 1, то включен DD11.1 и импульсы проходят на вход вычитания (диапазоны 3,5 и 7 МГц). Управляющий сигнал может определяться переключателем диапазонов тран-сивера — на диапазонах 28, 21 и 14 МГц вход управления должен быть со­единен с общим проводом, на остальных оставлен свободным.

В результате в реверсивный счетчик записывается число, в 100 раз мень­шее частоты трансивера, выраженной в герцах.

Коротким импульсом с выхода элемента DD10.2 производится перепись результата из счетчика DD15DD20 в сдвигающий регистр DD21DD26 (см. рис. 76). Индикация результата производится динамическим способом на ва­куумном восьмиразрядном люминесцентном индикаторе HG1 типа ИВ-21. Ра­бота элементов DD7, DD8, DD12, DD13 и транзисторов матриц VT11 — VT14, обеспечивающих динамический режим работы индикатора, иллюстрируется рис. 78. На входы элемента И — НЕ DD8.1 (см. рис. 75) подаются сигналы с частотами 100, 10, 5 и 1 кГц, в результате чего на выходе DD10.1 форми­руются пачки из четырех импульсов каждая, следующие друг за другом с ча­стотой 1 кГц. Частота повторения импульсов внутри пачки — 100 кГц. Сфор­мированные пачки подаются на вход сдвига сдвигающего регистра DD21 — DD26 (см. рис. 76), замкнутого в кольцо. На выходах последних четырех раз­рядов сдвигающего регистра (DD26) последовательно формируются коды, со­ответствующие цифрам, которые необходимо индицировать. Коды цифр по­даются через преобразователь двоично-десятичного кода в код семисегментного индикатора DD12 (см. рис. 75) и транзисторы транзисторных матриц VT11, VT12 — на соответствующие аноды индикатора HG1. Одновременно с каждой подачей пачки из четырех импульсов на счетный вход счетчика DD7 подается импульс, переключающий его в новое состояние. Выходы счетчика соединены со входами дешифратора DD13, выходы дешифратора через тран­зисторы матриц VT13, VT14 управляют сетками индикатора HG1. В резуль­тате в индикаторе поочередно зажигаются необходимые цифры.

После установки в 0 счетчика DD7, происходящей одновременно с пере­писью информации из реверсивного счетчика в сдвигающий регистр, на вы­ходах DD26 формируется код цифры десятков мегагерц. Одновременно на сет­ку седьмой цифры индикатора ИВ-21 (счет цифр в нем ведется справа на­лево) подается положительное относительно катода напряжение, и загорается соответствующая цифра. Спустя 1 мс подается пачка импульсов, на выходе DD26 появляется код цифры единиц мегагерц, на сетку шестой цифры ин­дикатора подается положительное напряжение и т. д. Одновременно с зажи­ганием шестой цифры положительное напряжение подается и на анод запя­той, в результате чего на индикаторе цифры мегагерц от остальных цифр отделяются запятой.

Импульсы переписи информации имеют частоту 20 Гц, импульсы на сет­ках индикаторов — 167 Гц, в результате чего в каждом цикле измерения каж­дая цифра загорается 8 раз. Для исключения подсветки сегментов в момен­ты сдвига на вход гашения S преобразователя кода DD12 подаются гасящие импульсы с выхода DD8.2 с частотой 1 кГц.

Примененный способ динамической индикации по сравнению с исполь­зованием мультиплексеров требует меньшего количества ИС и значительно бо­лее прост в монтаже цепей.

Питание индикатора HG1 осуществляется от мостового выпрямителя на диодной матрице VD1 с конденсатором С1. Плюс выпрямленного напряжения соединен с плюсом источника 5 В, минус — через стабилитрон VD2 и диоды VD3, VD4 с катодом индикатора.

Диоды VD3 и VD4 образуют искусственную среднюю точку напряжения накала HG1, стабилитрон VD2 обеспечивает запирающее напряжение на сет­ках цифр, индикация которых в данный момент не производится.

В счетчике DD15DD20 (см. рис. 76), как указывалось выше, алгебраи-. чески суммируются результаты измерения трех частот. Из-за произвольного со­отношения фаз измеряемых частот и эталонной частоты 1 МГц каждая из ча­стот измеряется со случайной ошибкой в единицу младшего разряда. Полная ошибка может достигать трех единиц, причем величина ошибки для каждого цикла измерений случайна. В результате цифра сотен герц может хаотически изменяться 20 раз в секунду.

Для уменьшения этого явления триггер DD5.2 устанавливается в фикси­рованное состояние перед началом счета частоты F1, что уменьшает неопреде­ленность его начальной фазы. Кроме того, вход младшего разряда ИС DD21 соединен с общим проводом, в результате чего индицируемая цифра сотен герц всегда четная и диапазон хаотического изменения цифр сотен герц сни­жен до возможного минимума — одного знака. .

Конструктивно цифровая шкала выполнена на двух двусторонних печат­ных платах размером 85Xil30 мм из стеклотекстолита толщиной 1 мм.

На печатной плате с реверсивным счетчиком и сдвигающим регистром рас­положен также кварцевый генератор на ИС DD14. Платы соединены между собой четырьмя стойками высотой 22 мм. Выводы индикатора HG1 впаяны непосредственно в отверстия первой печатной платы, а сам индикатор уста­новлен в промежутке между печатными платами. Вся конструкция помещена в алюминиевый корпус с габаритными размерами 33x135x90 мм. Верхняя и нижняя стенки корпуса имеют вентиляционные отверстия. Передняя стенка корпуса изготовлена из зеленого органического стекла.

К трансиверу шкала подключается через разъем РШ5-15ГВ, установлен­ный на задней стенке корпуса. Для питания шкалы необходимы переменные напряжения 30 В 5 мА, 2,4 В 35 мА и стабилизированное постоянное напря­жения 5 В 1 А. Обмотки трансформатора 30 В и 2,4 В должны быть изолиро­ваны между собой и от других цепей.

Напряжения измеряемых частот Fl, F2, F3 могут находиться в пределах 0,2 — 5 В.

Частота кварцевого генератора может быть кратной 100 кГц в пределах от 100 кГц до 1 МГц, 1,2 или 1,6 МГц. Для получения на выходе делителя частоты 100 кГц следует использовать микросхемы К155ИЕ2, К155ИЕ4 или К.155ИЕ5 в режиме соответствующего коэффициента деления частоты, соединив выводы ИС в соответствии с табл. 2.

Если в трансивере производится вычитание только одной частоты, вы­ход 12 DD9.2 следует подключить к дополнительному входу DD10.3, в каче­стве которого необходимо установить трехвходовой элемент И — НЕ, а выходы 1 и 2 DD11.4 объединить. При таком изменении частота F2 всегда будет по­даваться только на вход сложения.

При использовании шкалы в радиовещательном приемнике .вместо уста­новки реверсивного счетчика перед началом счета в 0 необходима запись в счетчик числа, соответствующего промежуточной частоте. Если в приемнике один гетеродин, частота которого всегда выше принимаемой, а промежуточ­ная частота 465 кГц, в счетчик необходимо записать число 99 535 кГц. В этом случае при подаче сигнала с частотой гетеродина на вход F1 будет проис­ходить переполнение счетчика и на HG1 будет индицироваться частота приема.

Для предварительной записи в счетчик некоторого числа к общему про­воду необходимо подключать только часть входов DlD8 микросхем счет­чика. При промежуточной частоте 465 кГц необходимо записать число 99 535 кГц, для чего у ИС DD20 и DD19 соединить с общим проводом входы D2 и D4 (запись числа 9), у DD18 и DD16 — входы D2 и D8 (число 5), у DD17 — входы D4 и D8 (число 3), у DD15 — все входы D (число 0).

Поскольку при одном гетеродине входы F2 и F3 не нужны, элементы усилителей-ограничителей этих каналов можно не устанавливать, а выводы 1 и 5 DD9 соединить с общим проводом.

При отсутствии микросхемы К514ИД1 вместо нее можно использовать К514ИД2, включив транзисторы матриц VT11 и VT12 аналогично транзисто­рам VT13 и VT14, дополнительно установив между базами транзисторов и выходами микросхемы К514ИД2 резисторы с сопротивлением 1,5 кОм.

Интегральные микросхемы серии К155 можно заменить аналогичными ИС серии К133, ИС К131ТМ2 на К130ТМ2. В усилителях-ограничителях транзи­сторы КТ316А можно заменить на КТ316 с любыми буквенными индексами или другими импульсными транзисторами с временем рассасывания не более

15 не, диоды КД503А — любыми кремниевыми диодами. В качестве VDJ мож­но использовать любые диоды с рабочим напряжением не менее 50 В, в ка­честве VD2 любой стабилитрон на 6 — 10 В.

Индикатор ИВ-31 можно заменить на ИВ-18, увеличив напряжение на­кала до 5 В, или шестью любыми одноместными вакуумными люминесцент­ными индикаторами, установив соответствующее напряжение питания.

Рнс. 79. Схема устройства динамической индика­ции с использованием мультиплексеров

 

Транзисторные матрицы КТС622А можно заменить любы­ми кремниевыми р — n — р-транзи-сторами с допустимым напряже­нием коллектор — эмиттер не ме­нее 40 В.

При отсутствии ошибок в ис­правных деталях в шкале при на­стройке необходимо лишь устано­вить точно частоту кварцевого ге­нератора подбором емкости кон- денсаторов С14 и С15. Если даже при замене С15 перемычкой часто­ту генератора не удается снизить до необходимой, можно на место» С15 установить дроссель с индук­тивностью 5 — 20 мкГн.

На рис. 79 приведен вариант-схемы динамической индикации с использованием мультиплексеров КЦ55КП7. В этом случае сдвигаю­щий регистр заменяют статиче­ским регистром на микросхемах К155ТМ5 или К155ТМ7, можно сохранить К155ИР1. Вместо сдви­га используется опрос содержимо­го регистра памяти мультиплексерами DD27DD30. Микросхема DD8 и элемент-DD10.1 при этом не нужны, вход 5 DD12 надо оставить свободным.

Устройство динамической индикации с использованием мультиплексеров-. сложнее устройства со сдвигающим регистром, если необходим промежуточный-регистр хранения информации. Если же такой регистр не требуется, например-при индикации показаний электронных часов, схема с мультиплексерами тре­бует меньшего количества ИС. Поэтому в случае объединения цифровой шка- -лы и электронных часов, собранных, например, по схеме рис. 40, можно per комендовать схему динамической индикации с использованием мультиплексе­ров. В этом случае в качестве DD27DD30 (см. рис. 79) необходимо уста­новить мультиплексеры К156КП1, в качестве DD13 — дешифратор К.155ИДЗ,. включив дополнительно между его выходами и базами двенадцати ключевых транзисторов резисторы сопротивлением 1,5 кОм. Счетчик DD7 должен рабо­тать в режиме деления на 12. Индикация должна осуществляться на двух. индикаторах ИВ-21 или ИВ-18, аноды которых объединены. Между выхода­ми интегральных микросхем часов и входами мультиплексеров установки ре­гистра памяти не требуется.

При использовании в качестве DD27 — DD30 интегральных микросхем К155КП1 или К155КП5, имеющих только инверсные выходы, необходимо меж­ду их выходами и входами DD12 включить инверторы, например одну микро­схему К155ЛАЗ.

Фронты импульсов на выходах интегральных микросхем серии К155 име­ют малую длительность, что является источником заметных помех во входном тракте трансивера или радиоприемника. Для исключения помех все цепи пи­тания целесообразно вводить в корпус шкалы через Г-образные Z-C-фильтры с использованием дросселей на 20 — 100 мкГн и проходных конденсаторов ем­костью 4700 пФ, необходим также хороший электрический контакт между кор­пусами шкалы и прибора, в который она встроена.

 



<== предыдущая лекция | следующая лекция ==>
 | ЗНАКОГЕНЕРАТОР РАДИОЛЮБИТЕЛЬСКОГО ДИСПЛЕЯ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.209 сек.