русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Семисегментный дешифратор


Дата добавления: 2014-11-27; просмотров: 9893; Нарушение авторских прав


Семисегментный код необходим для отображения на цифровых индикаторах значений цифр от 0 до 9. Семисегментный, потому что цифры отображаются так называемыми сегментами, которых семь штук. Ниже приведена табличка соответствия между двоичным и семисегментным кодами.

Цифра Двоичный код Семисегментный код
a b c d e f g

Во, блин. Ну, в общем, на логике показывать не буду. Поскольку счетчик нам уже знаком, посмотрим на работу его совместно с дешифратором. Схема реальная, т. е. можно повторить.

 

Как видно, ничего сложного, все элементы схемы нам знакомы. На элементах DD1.1, DD1.2 (К561ЛА7) собран генератор тактовых импульсов. Резистор R1 и кондер С1 задают частоту следования импульсов. Формулу определения частоты следования я не помню, вспомню, напишу. Можно, если не в лом, определить эту самую частоту методом "научного тыка". В любом случае, если вместо постоянного резика воткнуть переменный, то частоту можно будет регулировать в некоторых пределах. С выхода генератора импульсы поступают на счетчик, выполненный на DD2. Это реверсивный двоично-десятичный счетчик с предустановкой. Вход ±1 определяет напрвление счета, вход 2/10 - режим (двоичный или десятичный). Вход V предназначен для разрешения записи в счетчик состояния информационных входов D0 - D3. Конкретно этому счетчику (561ИЕ14, 564ИЕ14) надо подать уровень лог. 1. Резик R2 и кондер C2 образуют дифференцирующую цепь. При включении питания короткий импульс на входе V, формируемый дифференцирующей цепью, разрешает запись в счетчик состояния входов D0 - D3. Поскольку эти выводы соединены с общим проводом, в счетчик записывается 0000, т. е. он обнуляется. Тактовый генератор фигачит импульсы, счетчик их считает и с его выходов 1-2-4-8 результат счета поступает на вход дешифратора DD3 (514ИД1). Это дешифратор двоичного кода в семисегментный. С выходов дешифратора сигналы (согласно второй таблице) поступают на входы семисегментного индикатора HL1, который кажет эту инфу, т. е. ряд цифр от 0 до 9. Внутри микрухи DD3 стоит DC. Это от буржуйского Decoder – по-нашински дешифратор. На выходе переноса p (выв. 7) счетчика DD2 при его переполнении формируется сигнал. Если взять следующие узлы: DD2, DD3, HL1 и влепить их снизу счетчика DD2, аналогично соединить соответствующие входы, кроме С, выход переноса (выв. 7) предыдущего счетчика соединить со входом С следующего, то получим многозначный индикатор. После отсчета 10 импульсов первым счетчиком, второй переключится на 1. Через следующие 10 импульсов второй счетчик увеличится еще на 1 и так далее. По такому принципу деления частоты работают, например, часы. Единственное, что там коэффициент пересчета другой (не 10, а 6), все-таки в минуте 60 сек. Этот счетчик тоже можно заставить считать до 6. Берем лог. элемент И, его входы соединяем с выходами 2-4 (выв. 11 и 14), а выход подключаем к дифференцирующей цепочке R2C2. Тогда при достижении числа 6 (0110) уровень лог. 1 на выходе элемента И сформирует не без помощи цепи R2C2 импульс, который запишет в счетчик 0000. И еще, увеличивая частоту генератора цифири будут бежать быстрее, например вот так:



 

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует двоичному коду. Ну и навороченное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, но более понятна, на мой взгляд, вот эта:

 

Рис. 1 - Структура мультиплексора

Самая большая хренотень есть не что иное, как элемент И-ИЛИ. Конкретно здесь элемент 4-х входовый. Ну а квадратики с единичками внутри, если кто не помнит, инверторы. Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них чего-нибудь подают. Входы посередке, а именно А0-А1, называются адресными входами. Вот сюда именно и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y. Вход С, черт его знает, нафига он здесь. Вроде бы как разрешение работы, а может просто для понта. Ну его в баню. На схеме еще есть входы адреса с инверсией. Так вот они тоже показаны здесь для понта. На этом рисунке показан четырехвходовой, или как еще его называют, 4Х1 мультиплексор. Потому и адресных входов всего 2. Как нам известно, максимальное число переменных определяется как 2n, где n - разряд кода. Здесь мы видим, что переменных четыре штуки, а значит разряд будет равен 2 (22 = 4). Для пояснения принципа работы этой схемы посмотрим на табличку истинности:

A1 A0 Y
D0
D1
D2
D3

Вот так двоичный код выбирает нужный вход. Т. е., если имеем четыре объекта, ну, скажем, они пуляют сигналы, а устройство отображения у нас одно. Берем мультик (мультиплексор) и втуляем его в схему. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта. Такой вот, дохленький пример.

Микросхемой мультик обозначается вот так:

 

Рис. 2 - Мультиплексор

Вообще, мультиплексоров всяких дофига. Есть и сдвоенные четырехвходовые, восьмивходовые, 16-ти входовые, счетверенные двухвходовые и пр. Тот, что на рисунке сделан от фонаря.

Демультиплексор. Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и куча выходов. Двоичный код определяет, какой выход будет подключен ко входу. Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких выходов и подключает его к своему входу или, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов. Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И навороченное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования. Из-за схожести структур мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексорром и демультиплексором, смотря с какой стороны подавать сигналы, например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то бишь, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (лог. 0 или 1) существует возможность переключения аналоговых. Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Вот напоследок простенькую схемку селектора входов УМЗЧ мы и рассмотрим. Построим ее, ну скажем, с использованием триггеров и мультиплексора.

 

Рис. 3 - Селектор входных сигналов

Вот такая нехитрая схемка. Итак, разберем работу и деталюшки. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор. В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки. Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Черт его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу. Хорошо бы поставить индикатор подключенного входа. Вот тут-то и пригодится семисегментный дешифратор. Нажимаем ссылочку, вспоминаем семисегментный дешифратор и смотрим на схемку (там, где циферки бегут). Берем дешифратор и индикатор, обрубаем счетчик и другую галиматью, переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выв. 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выв. 1 и 13). Входы дешифратора 4 и 8 (выв. 2 и 6) кидаем на корпус (т. е. подаем лог. 0). Все! Индикатор будет показывать состояние кольцевого счетчика, а именно циферки от 0 до 3. Цифиря 0 соответствует первому входу, 1 - 2-му и т. д.

Регистр (от буржуйского to register - регистрировать) - это цифровой узел, предназначенный для записи и хранения числа. Некоторые регистры могут преобразовывать информацию из последовательной формы в параллельную и наоборот. Для начала рассмотрим регистр хранения.



<== предыдущая лекция | следующая лекция ==>
ЦЕХОВЫЕ УСЛОВИЯ И ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ИЗГОТОВЛЕНИИ ПЕЧАТНЫХ ФОРМ | Перечень применяемых материалов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.548 сек.