Цифровые элементы (логические, запоминающие, буферные) могут иметь выходы следующих типов: логические, с открытым коллектором (стоком), с третьим состоянием, с открытым эмиттером (истоком).
Наличие четырех типов выходов объясняется различными условиями работы элементов в логических цепях, в магистрально-модульных микропроцессорных системах и т. д.
Логический выход
Логический выход формирует два уровня выходного напряжения ( и ). Выходное сопротивление логического выхода стремятся сделать малым, способным развивать большие токи для перезаряда емкостных нагрузок и, следовательно, получения высокого быстродействия элемента. Такой тип выхода имеют большинство логических элементов, используемых в комбинационных цепях.
Схемы логических выходов элементов ТТЛ(Ш) и КМОП подобны двухтактным каскадам — в них оба фронта выходного напряжения формируются с участием активных транзисторов, работающих противофазно, что обеспечивает малые выходные сопротивления при любом направлении переключения выхода (рис. 1.3, о).
Особенность таких выходов состоит в том, что их нельзя соединять параллельно. Во-первых, это создает логическую неопределенность, т. к. в точке соединения выхода, формирующего логическую единицу, и выхода, формирующего логический нуль, не будет нормального результата. Во-вторых, при соединении выходов, находящихся в различных логических состояниях, возникло бы их "противоборство". Вследствие малых величин выходных сопротивлений уравнительный ток при этом может достигать достаточно большой величины, что может вывести из строя электрические элементы выходной цепи.
а б
Рис. 1.3. Схема выходной цепи цифрового элемента (а) и график изменения потребляемого им тока в процессе переключения (б)
Вторая особенность логического выхода двухтактного типа связана с протеканием через оба транзистора коротких импульсов тока при переключениях из одного логического состояния в другое. Эти токи протекают от источника питания на общую точку ("землю"). В статических состояниях таких токов быть не может, т. к. транзисторы Т1 и Т2 работают в противофазе, и один из них всегда заперт. Однако в переходном процессе из-за некоторой несинхронности переключения транзисторов возникает кратковременная ситуация, в которой проводят оба транзистора, что и порождает короткий импульс сквозного тока значительной величины (рис. 1.3, б).