Прежде всего необходимо проверить, есть ли у данной игры седловая точка. Если да, то игра имеет решение в чистых стратегиях, причём оптимальными стратегиями игроков 1 и 2 соответственно будут чистая максиминная и чистая минимаксная стратегии. Если же игра с матрицей выигрышей А не имеет чистых стратегий, то оба игрока имеют только такие оптимальные стратегии, которые используют все свои чистые стратегии с положительными вероятностями. В противном случае один из игроков (например 1) имеет чистую оптимальную стратегию, а другой – только смешанные. Не ограничивая общности, можно считать, что оптимальной стратегией игрока 1 является выбор с вероятностью 1 первой строки. Далее, по свойству 1 следует, что а11 = а12 = u и матрица имеет вид
(40)
Легко видеть, что для матриц такого вида одна из стратегий игрока 2 является доминируемой. Следовательно, по свойству 4 этот игрок имеет чистую стратегию, что противоречит предположению.
Пусть Х = (p, 1-p) – оптимальная стратегия игрока 1, где p – можно рассматривать как частоту (вероятность) использования стратегии A1 первым игроком, a (1- p) – частота (вероятность) использования стратегии А2 первым игроком. Так как игрок 2 имеет смешанную оптимальную стратегию, из свойства 1 получим, что (см. также свойство 7):
(41)
Отсюда следует, что при u ¹ 0 столбцы матрицы А не могут быть пропорциональны с коэффициентом пропорциональности, отличным от единицы. Если же коэффициент пропорциональности равен единице, то матрица А принимает вид
(42)
и игрок 1 имеет чистую оптимальную стратегию (он выбирает с вероятностью 1 ту из строк, элементы которой не меньше соответствующих элементов другой), что противоречит предположению. Следовательно, если u ¹ 0 и игроки имеют только смешанные оптимальные стратегии, то определитель матрицы А отличен от нуля. Из этого следует, что последняя система уравнений имеет единственное решение. Решая её, находим
(43)
Тогда подставив, (43) в (41) можно получить выражение для цены игры
. (44)
Аналогичные рассуждения приводят нас к тому, что оптимальная стратегия игрока 2 (второго игрока) Y = (q, 1-q), где q– можно рассматривать как частоту (вероятность) использования стратегии B1 вторым игроком, а (1-q) – частота (вероятность) использования стратегии B2 вторым игроком . Тогда имеем:
Откуда
(45)
.
Поясним графический метод решения матричных игр на примерах.