русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Приведенная (по Ляпунову) система


Дата добавления: 2014-10-04; просмотров: 713; Нарушение авторских прав


В математических методах исследования устойчивости систем нелинейных и нестационарных дифференциальных уравнений с помощью второго (или прямого) метода Ляпунова имеют дело только с системами, допускающими тривиальное решение. Рассмотрим формальную процедуру приведения задачи исследования свойств устойчивости произвольного фиксированного решения системы к задаче исследования тривиального решения эквивалентной системы, допускающей тривиальное решение. Такую эквивалентную систему и будем называть (вслед за Ляпуновым) приведенной.

Пусть дана конечномерная гладкая динамическая система с непрерывным временем вида

(1.3.1)

и дано некоторое ее фиксированное решение , подлежащее исследованию.

Введем обозначение новой переменной

где - любое решение системы (1.3.1), т.е. есть отклонение произвольного решения от решения . Тогда, так как

Получим дифференциальное уравнение для отклонений вида

(1.3.2)

где обозначено:

Получили некоторую «новую» систему (1.3.2), эквивалентную «старой» системе (1.3.1), путем исключения из «старой» системы (1.3.1) некоторого решения , которое считаем известным и устойчивость которого подлежит исследованию. Очевидно, что система (1.3.2) допускает (в силу построения) тривиальное решение , что легко проверить его подстановкой.

Таким образом, привели задачу исследования устойчивости произвольного известного решения системы (1.3.1) к задаче исследования устойчивости тривиального решения (положения равновесия) так называемой «приведенной» системы (1.3.2) (по Ляпунову она называется также системой уравнений возмущенного движения, а решение - невозмущенным движением).

 

 



<== предыдущая лекция | следующая лекция ==>
Положение равновесия. Тривиальное решение. | Функции Ляпунова


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.